2010, 17: 68-79. doi: 10.3934/era.2010.17.68

Local rigidity of partially hyperbolic actions

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Received  February 2010 Revised  July 2010 Published  September 2010

We prove the local differentiable rigidity of partially hyperbolic abelian algebraic high-rank actions on compact homogeneous spaces obtained from simple indefinite orthogonal and unitary groups. The conclusions are based on geometric Katok-Damjanovic way and progress towards computations of the Schur multipliers of these non-split groups.
Citation: Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68
References:
[1]

M. Brin, Y. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[2]

D. Damjanovic and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions,, Discr. Cont. Dyn.Syst., 13 (2005), 985.

[3]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on $SL(n,\RR)/\Gamma$,, , ().

[4]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method and $\ZZ^k$ actions on the torus,, Annals of Math, (2010).

[5]

D. Damjanovic, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions,, J. Modern Dyn., 1 (2007), 665.

[6]

Vinay V. Deodhar, On central extensions of rational points of algebraic groups,, Amer. J. Math., 100 (1978), 303. doi: doi:10.2307/2373853.

[7]

A. J. Hahn and O. T. O'Meara, The classical groups and K-theory,, Springer Verlag, (1980), 55.

[8]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds. Lecture Notes in Mathematics,", 583, (1977).

[9]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions,, Proc. Steklov Inst. Math., 216 (1997), 287.

[10]

G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups,", Springer-Verlag, (1991).

[11]

G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices,, Ergodic Theory Dynam. Systems, 21 (2001), 121. doi: doi:10.1017/S0143385701001109.

[12]

R. Steinberg, Generateurs, relations et revetements de groupes algebriques,, Colloque de Bruxelles, (1962), 113.

show all references

References:
[1]

M. Brin, Y. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[2]

D. Damjanovic and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions,, Discr. Cont. Dyn.Syst., 13 (2005), 985.

[3]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on $SL(n,\RR)/\Gamma$,, , ().

[4]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method and $\ZZ^k$ actions on the torus,, Annals of Math, (2010).

[5]

D. Damjanovic, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions,, J. Modern Dyn., 1 (2007), 665.

[6]

Vinay V. Deodhar, On central extensions of rational points of algebraic groups,, Amer. J. Math., 100 (1978), 303. doi: doi:10.2307/2373853.

[7]

A. J. Hahn and O. T. O'Meara, The classical groups and K-theory,, Springer Verlag, (1980), 55.

[8]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds. Lecture Notes in Mathematics,", 583, (1977).

[9]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions,, Proc. Steklov Inst. Math., 216 (1997), 287.

[10]

G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups,", Springer-Verlag, (1991).

[11]

G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices,, Ergodic Theory Dynam. Systems, 21 (2001), 121. doi: doi:10.1017/S0143385701001109.

[12]

R. Steinberg, Generateurs, relations et revetements de groupes algebriques,, Colloque de Bruxelles, (1962), 113.

[1]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[2]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[3]

Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203

[4]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[5]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[6]

Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25

[7]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[8]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[9]

Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211

[10]

Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110.

[11]

Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193

[12]

Federico Rodriguez Hertz. Global rigidity of certain Abelian actions by toral automorphisms. Journal of Modern Dynamics, 2007, 1 (3) : 425-442. doi: 10.3934/jmd.2007.1.425

[13]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[14]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[15]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[16]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[17]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[18]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[19]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[20]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]