2012, 19: 18-32. doi: 10.3934/era.2012.19.18

Constructing automorphic representations in split classical groups

1. 

School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Israel

Received  June 2011 Revised  December 2011 Published  February 2012

In this paper we introduce a general construction for a correspondence between certain Automorphic representations in classical groups. This construction is based on the method of small representations, which we use to construct examples of CAP representations.
Citation: David Ginzburg. Constructing automorphic representations in split classical groups. Electronic Research Announcements, 2012, 19: 18-32. doi: 10.3934/era.2012.19.18
References:
[1]

R. Carter, "Finite Groups of Lie Type,", J. Wiley & Sons, (1985).   Google Scholar

[2]

J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups,, \textbf{99} (2004), 99 (2004), 163.   Google Scholar

[3]

D. Collingwood and W. McGovern, "Nilpotent Orbits in Semisimple Lie Algebras,", Van Nostrand Reinhold, (1991).   Google Scholar

[4]

D. Ginzburg, "A construction of CAP representations for classical groups,", International Math. Research Notices, 20 (2003), 1123.  doi: 10.1155/S1073792803212228.  Google Scholar

[5]

D. Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations,, Israel Journal of Mathematics, 151 (2006), 323.  doi: 10.1007/BF02777366.  Google Scholar

[6]

D. Ginzburg, Endoscopic lifting in classical groups and poles of tensor $L$ functions,, Duke Math. Journal, 141 (2008), 447.  doi: 10.1215/00127094-2007-002.  Google Scholar

[7]

D. Ginzburg, On the lifting from $PGL_2\times PGL_2$ to $G_2$,, International Math. Research Notices, 25 (2005), 1499.   Google Scholar

[8]

D. Ginzburg and D. Jiang, Periods and liftings: From $G_2$ to $C_3$,, Israel Journal of Math., 123 (2001), 29.  doi: 10.1007/BF02784119.  Google Scholar

[9]

D. Ginzburg and D. Jiang, Some conjectures on endoscopic representations in odd orthogonal groups,, Nagoya Mathematical Journal, ().   Google Scholar

[10]

D. Ginzburg, D. Jiang and D. Soudry, On CAP representations for even orthogonal groups I: A correspondence of unramified representations,, preprint., ().   Google Scholar

[11]

D. Ginzburg, D. Jiang and S. Rallis, On CAP automorphic representations of a split group of type $D_4$,, J. Reine Angew. Math., 552 (2002), 179.  doi: 10.1515/crll.2002.090.  Google Scholar

[12]

D. Ginzburg, D. Jiang and S. Rallis, Periods of residual representations of $SO(2l)$,, Manuscripta Mathematica, 113 (2004), 319.  doi: 10.1007/s00229-003-0417-x.  Google Scholar

[13]

D. Ginzburg, S. Rallis and D. Soudry, "The Descent Map from Automorphic Representations of $GL(n)$ to Classical Groups,", World Scientific, (2011).  doi: 10.1142/9789814304993.  Google Scholar

[14]

D. Ginzburg, S. Rallis and D. Soudry, Construction of CAP representations for symplectic groups using the descent method,, in, (2005), 193.   Google Scholar

[15]

H. Jacquet, On the residual spectrum of $GL(n)$,, in, 1041 (1984), 185.   Google Scholar

[16]

I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting,, Invent. Math., 71 (1983), 309.  doi: 10.1007/BF01389101.  Google Scholar

show all references

References:
[1]

R. Carter, "Finite Groups of Lie Type,", J. Wiley & Sons, (1985).   Google Scholar

[2]

J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups,, \textbf{99} (2004), 99 (2004), 163.   Google Scholar

[3]

D. Collingwood and W. McGovern, "Nilpotent Orbits in Semisimple Lie Algebras,", Van Nostrand Reinhold, (1991).   Google Scholar

[4]

D. Ginzburg, "A construction of CAP representations for classical groups,", International Math. Research Notices, 20 (2003), 1123.  doi: 10.1155/S1073792803212228.  Google Scholar

[5]

D. Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations,, Israel Journal of Mathematics, 151 (2006), 323.  doi: 10.1007/BF02777366.  Google Scholar

[6]

D. Ginzburg, Endoscopic lifting in classical groups and poles of tensor $L$ functions,, Duke Math. Journal, 141 (2008), 447.  doi: 10.1215/00127094-2007-002.  Google Scholar

[7]

D. Ginzburg, On the lifting from $PGL_2\times PGL_2$ to $G_2$,, International Math. Research Notices, 25 (2005), 1499.   Google Scholar

[8]

D. Ginzburg and D. Jiang, Periods and liftings: From $G_2$ to $C_3$,, Israel Journal of Math., 123 (2001), 29.  doi: 10.1007/BF02784119.  Google Scholar

[9]

D. Ginzburg and D. Jiang, Some conjectures on endoscopic representations in odd orthogonal groups,, Nagoya Mathematical Journal, ().   Google Scholar

[10]

D. Ginzburg, D. Jiang and D. Soudry, On CAP representations for even orthogonal groups I: A correspondence of unramified representations,, preprint., ().   Google Scholar

[11]

D. Ginzburg, D. Jiang and S. Rallis, On CAP automorphic representations of a split group of type $D_4$,, J. Reine Angew. Math., 552 (2002), 179.  doi: 10.1515/crll.2002.090.  Google Scholar

[12]

D. Ginzburg, D. Jiang and S. Rallis, Periods of residual representations of $SO(2l)$,, Manuscripta Mathematica, 113 (2004), 319.  doi: 10.1007/s00229-003-0417-x.  Google Scholar

[13]

D. Ginzburg, S. Rallis and D. Soudry, "The Descent Map from Automorphic Representations of $GL(n)$ to Classical Groups,", World Scientific, (2011).  doi: 10.1142/9789814304993.  Google Scholar

[14]

D. Ginzburg, S. Rallis and D. Soudry, Construction of CAP representations for symplectic groups using the descent method,, in, (2005), 193.   Google Scholar

[15]

H. Jacquet, On the residual spectrum of $GL(n)$,, in, 1041 (1984), 185.   Google Scholar

[16]

I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting,, Invent. Math., 71 (1983), 309.  doi: 10.1007/BF01389101.  Google Scholar

[1]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[2]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[3]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[4]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[5]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[6]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]