-
Previous Article
Integration of exact Courant algebroids
- ERA-MS Home
- This Volume
-
Next Article
The pentagram map in higher dimensions and KdV flows
Upper bounds for Steklov eigenvalues on surfaces
1. | Laboratoire de Mathématiques (LAMA), Université de Savoie campus scientifique, 73376 Le Bourget-du-Lac, France |
2. | Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada |
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).
|
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.
|
[6] |
Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).
|
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.
|
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.
|
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).
|
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.
|
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.
|
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011). |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.
|
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.
|
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).
|
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.
|
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.
|
show all references
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).
|
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.
|
[6] |
Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).
|
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.
|
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.
|
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).
|
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.
|
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.
|
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011). |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.
|
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.
|
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).
|
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.
|
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.
|
[1] |
Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 |
[2] |
Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859 |
[3] |
Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81. |
[4] |
Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure & Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63 |
[5] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[6] |
Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743 |
[7] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[8] |
Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 |
[9] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[10] |
Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016 |
[11] |
David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004 |
[12] |
Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008 |
[13] |
Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075 |
[14] |
Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845 |
[15] |
Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343 |
[16] |
Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 |
[17] |
Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701 |
[18] |
Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098 |
[19] |
Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 |
[20] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
2016 Impact Factor: 0.483
Tools
Metrics
Other articles
by authors
[Back to Top]