2013, 20: 12-30. doi: 10.3934/era.2013.20.12

Infinite determinantal measures

1. 

Laboratoire d'Analyse, Topologie, Probabilités, Aix-Marseille Université, CNRS, Marseille, France

Received  July 2012 Revised  November 2012 Published  February 2013

Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets of the phase space. Alternatively, an infinite determinantal measure can be described as a product of a determinantal point process and a convergent, but not integrable, multiplicative functional.
    Theorem 4.1, the main result announced in this note, gives an explicit description for the ergodic decomposition of infinite Pickrell measures on the spaces of infinite complex matrices in terms of infinite determinantal measures obtained by finite-rank perturbations of Bessel point processes.
Citation: Alexander I. Bufetov. Infinite determinantal measures. Electronic Research Announcements, 2013, 20: 12-30. doi: 10.3934/era.2013.20.12
References:
[1]

V. I. Bogachev, "Measure Theory,", Vol. II, (2007). doi: 10.1007/978-3-540-34514-5.

[2]

A. Borodin, Determinantal point processes, in "The Oxford Handbook of Random Matrix Theory,", Oxford University Press, (2011), 231.

[3]

A. Borodin, A. Okounkov and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups,, J. Amer. Math. Soc., 13 (2000), 481. doi: 10.1090/S0894-0347-00-00337-4.

[4]

A. Borodin and G. Olshanski, Infinite random matrices and ergodic measures,, Comm. Math. Phys., 223 (2001), 87. doi: 10.1007/s002200100529.

[5]

A. Borodin and E. M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs,, J. Stat. Phys., 121 (2005), 291. doi: 10.1007/s10955-005-7583-z.

[6]

A. I. Bufetov, Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups,, \arXiv{1105.0664}, (2011).

[7]

A. I. Bufetov, Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices,, to appear in Annales de l'Institut Fourier, (2011).

[8]

A. I. Bufetov, Multiplicative functionals of determinantal processes,, Uspekhi Mat. Nauk, 67 (2012), 177. doi: 10.1070/RM2012v067n01ABEH004779.

[9]

J. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal processes and independence,, Probab. Surv., 3 (2006), 206. doi: 10.1214/154957806000000078.

[10]

A. Kolmogoroff, "Grundbegriffe der Wahrscheinlichkeitsrechnung,", Springer-Verlag, (1933).

[11]

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I,, Arch. Rational Mech. Anal., 59 (1975), 219.

[12]

R. Lyons, Determinantal probability measures,, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 167. doi: 10.1007/s10240-003-0016-0.

[13]

R. Lyons and J. Steif, Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination,, Duke Math. J., 120 (2003), 515. doi: 10.1215/S0012-7094-03-12032-3.

[14]

E. Lytvynov, Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density,, Rev. Math. Phys., 14 (2002), 1073. doi: 10.1142/S0129055X02001533.

[15]

O. Macchi, The coincidence approach to stochastic point processes,, Advances in Appl. Probability, 7 (1975), 83.

[16]

Yu. A. Neretin, Hua-type integrals over unitary groups and over projective limits of unitary groups,, Duke Math. J., 114 (2002), 239. doi: 10.1215/S0012-7094-02-11423-9.

[17]

G. Olshanski, The quasi-invariance property for the Gamma kernel determinantal measure,, Adv. Math., 226 (2011), 2305. doi: 10.1016/j.aim.2010.09.015.

[18]

G. Olshanski, Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe,, in, 7 (1990), 269.

[19]

G. Olshanski, "Unitary Representations of Infinite-Dimensional Classical Groups,", (Russian), (1989).

[20]

G. Olshanski and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices,, in, 175 (1996), 137.

[21]

D. Pickrell, Mackey analysis of infinite classical motion groups,, Pacific J. Math., 150 (1991), 139.

[22]

D. Pickrell, Separable representations of automorphism groups of infinite symmetric spaces,, J. Funct. Anal., 90 (1990), 1. doi: 10.1016/0022-1236(90)90078-Y.

[23]

D. Pickrell, Measures on infinite-dimensional Grassmann manifolds,, J. Funct. Anal., 70 (1987), 323. doi: 10.1016/0022-1236(87)90116-9.

[24]

M. Rabaoui, Asymptotic harmonic analysis on the space of square complex matrices,, J. Lie Theory, 18 (2008), 645.

[25]

M. Rabaoui, A Bochner type theorem for inductive limits of Gelfand pairs,, Ann. Inst. Fourier (Grenoble), 58 (2008), 1551.

[26]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. I-IV,", Second edition, (1980).

[27]

T. Shirai and Y. Takahashi, Random point fields associated with fermion, boson and other statistics,, in, 39 (2004), 345.

[28]

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes,, J. Funct. Anal., 205 (2003), 414. doi: 10.1016/S0022-1236(03)00171-X.

[29]

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties,, Ann. Probab., 31 (2003), 1533. doi: 10.1214/aop/1055425789.

[30]

A. Soshnikov, Determinantal random point fields,, (Russian) Uspekhi Mat. Nauk, 55 (2000), 107. doi: 10.1070/rm2000v055n05ABEH000321.

[31]

G. Szegö, "Orthogonal Polynomials,", AMS, (1969).

[32]

C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel,, Comm. Math. Phys., 161 (1994), 289.

[33]

A. M. Veršik, A description of invariant measures for actions of certain infinite-dimensional groups,, (Russian) Dokl. Akad. Nauk SSSR, 218 (1974), 749.

show all references

References:
[1]

V. I. Bogachev, "Measure Theory,", Vol. II, (2007). doi: 10.1007/978-3-540-34514-5.

[2]

A. Borodin, Determinantal point processes, in "The Oxford Handbook of Random Matrix Theory,", Oxford University Press, (2011), 231.

[3]

A. Borodin, A. Okounkov and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups,, J. Amer. Math. Soc., 13 (2000), 481. doi: 10.1090/S0894-0347-00-00337-4.

[4]

A. Borodin and G. Olshanski, Infinite random matrices and ergodic measures,, Comm. Math. Phys., 223 (2001), 87. doi: 10.1007/s002200100529.

[5]

A. Borodin and E. M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs,, J. Stat. Phys., 121 (2005), 291. doi: 10.1007/s10955-005-7583-z.

[6]

A. I. Bufetov, Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups,, \arXiv{1105.0664}, (2011).

[7]

A. I. Bufetov, Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices,, to appear in Annales de l'Institut Fourier, (2011).

[8]

A. I. Bufetov, Multiplicative functionals of determinantal processes,, Uspekhi Mat. Nauk, 67 (2012), 177. doi: 10.1070/RM2012v067n01ABEH004779.

[9]

J. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal processes and independence,, Probab. Surv., 3 (2006), 206. doi: 10.1214/154957806000000078.

[10]

A. Kolmogoroff, "Grundbegriffe der Wahrscheinlichkeitsrechnung,", Springer-Verlag, (1933).

[11]

A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I,, Arch. Rational Mech. Anal., 59 (1975), 219.

[12]

R. Lyons, Determinantal probability measures,, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 167. doi: 10.1007/s10240-003-0016-0.

[13]

R. Lyons and J. Steif, Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination,, Duke Math. J., 120 (2003), 515. doi: 10.1215/S0012-7094-03-12032-3.

[14]

E. Lytvynov, Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density,, Rev. Math. Phys., 14 (2002), 1073. doi: 10.1142/S0129055X02001533.

[15]

O. Macchi, The coincidence approach to stochastic point processes,, Advances in Appl. Probability, 7 (1975), 83.

[16]

Yu. A. Neretin, Hua-type integrals over unitary groups and over projective limits of unitary groups,, Duke Math. J., 114 (2002), 239. doi: 10.1215/S0012-7094-02-11423-9.

[17]

G. Olshanski, The quasi-invariance property for the Gamma kernel determinantal measure,, Adv. Math., 226 (2011), 2305. doi: 10.1016/j.aim.2010.09.015.

[18]

G. Olshanski, Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe,, in, 7 (1990), 269.

[19]

G. Olshanski, "Unitary Representations of Infinite-Dimensional Classical Groups,", (Russian), (1989).

[20]

G. Olshanski and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices,, in, 175 (1996), 137.

[21]

D. Pickrell, Mackey analysis of infinite classical motion groups,, Pacific J. Math., 150 (1991), 139.

[22]

D. Pickrell, Separable representations of automorphism groups of infinite symmetric spaces,, J. Funct. Anal., 90 (1990), 1. doi: 10.1016/0022-1236(90)90078-Y.

[23]

D. Pickrell, Measures on infinite-dimensional Grassmann manifolds,, J. Funct. Anal., 70 (1987), 323. doi: 10.1016/0022-1236(87)90116-9.

[24]

M. Rabaoui, Asymptotic harmonic analysis on the space of square complex matrices,, J. Lie Theory, 18 (2008), 645.

[25]

M. Rabaoui, A Bochner type theorem for inductive limits of Gelfand pairs,, Ann. Inst. Fourier (Grenoble), 58 (2008), 1551.

[26]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. I-IV,", Second edition, (1980).

[27]

T. Shirai and Y. Takahashi, Random point fields associated with fermion, boson and other statistics,, in, 39 (2004), 345.

[28]

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes,, J. Funct. Anal., 205 (2003), 414. doi: 10.1016/S0022-1236(03)00171-X.

[29]

T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties,, Ann. Probab., 31 (2003), 1533. doi: 10.1214/aop/1055425789.

[30]

A. Soshnikov, Determinantal random point fields,, (Russian) Uspekhi Mat. Nauk, 55 (2000), 107. doi: 10.1070/rm2000v055n05ABEH000321.

[31]

G. Szegö, "Orthogonal Polynomials,", AMS, (1969).

[32]

C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel,, Comm. Math. Phys., 161 (1994), 289.

[33]

A. M. Veršik, A description of invariant measures for actions of certain infinite-dimensional groups,, (Russian) Dokl. Akad. Nauk SSSR, 218 (1974), 749.

[1]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[2]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[3]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[4]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[5]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[6]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[7]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[8]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[9]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[10]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[11]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[12]

Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[14]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[15]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[16]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3/4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[17]

Guy Cohen, Jean-Pierre Conze. The CLT for rotated ergodic sums and related processes. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3981-4002. doi: 10.3934/dcds.2013.33.3981

[18]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[19]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[20]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]