2013, 20: 43-50. doi: 10.3934/era.2013.20.43

Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature

1. 

Department of Mathematics and Statistics, McGill University, Montréal, Canada, Canada

2. 

Department of Mathematics, University of Auckland, New Zealand &, Mathematical Sciences Institute, Australian National University, Canberra, Australia

3. 

Department of Mathematical Sciences, Seoul National University, Seoul, South Korea

Received  June 2012 Revised  March 2013 Published  March 2013

We study conformal invariants that arise from functions in the nullspace of conformally covariant differential operators. The invariants include nodal sets and the topology of nodal domains of eigenfunctions in the kernel of GJMS operators. We establish that on any manifold of dimension $n\geq 3$, there exist many metrics for which our invariants are nontrivial. We discuss new applications to curvature prescription problems.
Citation: Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43
References:
[1]

P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on manifolds of even dimension,, J. Geom. Phys., 59 (2009), 221. doi: 10.1016/j.geomphys.2008.10.007.

[2]

T. Branson and B. Ørsted, Conformal geometry and global invariants,, Differential Geometry and its Applications, 1 (1991), 279. doi: 10.1016/0926-2245(91)90004-S.

[3]

S. Brendle, Convergence of the $Q$-curvature flow on $S^4$,, Adv. Math., 205 (2006), 1. doi: 10.1016/j.aim.2005.07.002.

[4]

Y. Canzani, On the multiplicity of the eigenvalues of the conformally covariant operators,, E-print, (2012).

[5]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants from nodal sets. I. Negative Eigenvalues and Curvature Prescription,, Int. Mat. Res. Notices, (2013). doi: 10.1093/imrn/rns295.

[6]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants II: High-dimensional nullspace,, in preparation., ().

[7]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature,, Ann. of Math. (2), 168 (2008), 813. doi: 10.4007/annals.2008.168.813.

[8]

C. L. Fefferman and C. R. Graham, $Q$-curvature and Poincaré metrics,, Math. Res. Lett., 9 (2002), 139.

[9]

A. R. Gover, Q curvature prescription; forbidden functions and the GJMS null space,, Proc. Amer. Math. Soc., 138 (2010), 1453. doi: 10.1090/S0002-9939-09-10111-9.

[10]

C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds,, Michigan Math. J., 33 (1986), 253. doi: 10.1307/mmj/1029003354.

[11]

C. R. Graham, R. Jenne, L. J. Mason and G. A. Sparling, Conformally invariant powers of the Laplacian. I. Existence,, J. Lond. Math. Soc. (2), 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[12]

C. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89. doi: 10.1007/s00222-002-0268-1.

[13]

J. Kazdan and F. Warner, Scalar curvature and conformal deformations of Riemannian structure,, J. Diff. Geom., 10 (1975), 113.

[14]

K. Kodaira and D. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures,, Ann. of Math. (2), 71 (1960), 43. doi: 10.2307/1969879.

[15]

J. Lohkamp, Discontinuity of geometric expansions,, Comment. Math. Helvetici, 71 (1996), 213. doi: 10.1007/BF02566417.

[16]

T. Parker and S. Rosenberg, Invariants of conformal Laplacians,, J. Differential Geom., 25 (1987), 199.

[17]

R. Ponge, Continuity and multiplicity of eigenvalues of Fredholm operators. Applications to conformally invariant operators,, in preparation., ().

[18]

M. Teytel, How rare are multiple eigenvalues?,, Comm. Pure Appl. Math., 52 (1999), 917.

show all references

References:
[1]

P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on manifolds of even dimension,, J. Geom. Phys., 59 (2009), 221. doi: 10.1016/j.geomphys.2008.10.007.

[2]

T. Branson and B. Ørsted, Conformal geometry and global invariants,, Differential Geometry and its Applications, 1 (1991), 279. doi: 10.1016/0926-2245(91)90004-S.

[3]

S. Brendle, Convergence of the $Q$-curvature flow on $S^4$,, Adv. Math., 205 (2006), 1. doi: 10.1016/j.aim.2005.07.002.

[4]

Y. Canzani, On the multiplicity of the eigenvalues of the conformally covariant operators,, E-print, (2012).

[5]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants from nodal sets. I. Negative Eigenvalues and Curvature Prescription,, Int. Mat. Res. Notices, (2013). doi: 10.1093/imrn/rns295.

[6]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants II: High-dimensional nullspace,, in preparation., ().

[7]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature,, Ann. of Math. (2), 168 (2008), 813. doi: 10.4007/annals.2008.168.813.

[8]

C. L. Fefferman and C. R. Graham, $Q$-curvature and Poincaré metrics,, Math. Res. Lett., 9 (2002), 139.

[9]

A. R. Gover, Q curvature prescription; forbidden functions and the GJMS null space,, Proc. Amer. Math. Soc., 138 (2010), 1453. doi: 10.1090/S0002-9939-09-10111-9.

[10]

C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds,, Michigan Math. J., 33 (1986), 253. doi: 10.1307/mmj/1029003354.

[11]

C. R. Graham, R. Jenne, L. J. Mason and G. A. Sparling, Conformally invariant powers of the Laplacian. I. Existence,, J. Lond. Math. Soc. (2), 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[12]

C. Graham and M. Zworski, Scattering matrix in conformal geometry,, Invent. Math., 152 (2003), 89. doi: 10.1007/s00222-002-0268-1.

[13]

J. Kazdan and F. Warner, Scalar curvature and conformal deformations of Riemannian structure,, J. Diff. Geom., 10 (1975), 113.

[14]

K. Kodaira and D. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures,, Ann. of Math. (2), 71 (1960), 43. doi: 10.2307/1969879.

[15]

J. Lohkamp, Discontinuity of geometric expansions,, Comment. Math. Helvetici, 71 (1996), 213. doi: 10.1007/BF02566417.

[16]

T. Parker and S. Rosenberg, Invariants of conformal Laplacians,, J. Differential Geom., 25 (1987), 199.

[17]

R. Ponge, Continuity and multiplicity of eigenvalues of Fredholm operators. Applications to conformally invariant operators,, in preparation., ().

[18]

M. Teytel, How rare are multiple eigenvalues?,, Comm. Pure Appl. Math., 52 (1999), 917.

[1]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[2]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[3]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[4]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[5]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[6]

Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437

[7]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[8]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[9]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[10]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[11]

Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789

[12]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

[13]

Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure & Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159

[14]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[15]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[16]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[17]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[18]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[19]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[20]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]