2013, 20: 97-102. doi: 10.3934/era.2013.20.97

Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants

1. 

0287 Frist Center, Princeton University, Princeton, NJ 08544, United States

2. 

Penn State University Mathematics Department, 206 McAllister Building, University Park, PA 16802, United States

Received  September 2013 Published  November 2013

We use the Hofer norm to show that all Hamiltonian diffeomorphisms with compact support in $\mathbb{R}^{2n}$ that displace an open connected set with a nonzero Hofer-Zehnder capacity move a point farther than a capacity-dependent constant. In $\mathbb{R}^2$, this result is extended to all compactly supported area-preserving homeomorphisms. Next, using the spectral norm, we show the result holds for Hamiltonian diffeomorphisms on closed surfaces. We then show that all area-preserving homeomorphisms of $S^2$ and $\mathbb{RP}^2$ that displace the closure of an open connected set of fixed area move a point farther than an area-dependent constant.
Citation: Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97
References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().

[2]

H. Hofer, Estimates for the energy of a symplectic map,, \emph{Comment. Math Helv.}, 68 (1993), 48. doi: 10.1007/BF02565809.

[3]

S. Smale, Diffeomorphisms of the 2-sphere,, \emph{Proc. Amer. Math. Soc.}, 10 (1959), 621.

[4]

M. Gromov, Pseudoholomorphic curves in symplectic manifolds,, \emph{Invent. Math.}, 82 (1985), 307. doi: 10.1007/BF01388806.

[5]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher, (1994). doi: 10.1007/978-3-0348-8540-9.

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().

[8]

Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group,, \emph{Duke Math. J.}, 130 (2005), 199.

[9]

M. Usher, The sharp energy-capacity inequality,, \emph{Comm. Contemp. Math.}, 12 (2010), 457. doi: 10.1142/S0219199710003889.

[10]

S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds,, \emph{J. Topol. Anal.}, 4 (2012), 481. doi: 10.1142/S1793525312500215.

show all references

References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().

[2]

H. Hofer, Estimates for the energy of a symplectic map,, \emph{Comment. Math Helv.}, 68 (1993), 48. doi: 10.1007/BF02565809.

[3]

S. Smale, Diffeomorphisms of the 2-sphere,, \emph{Proc. Amer. Math. Soc.}, 10 (1959), 621.

[4]

M. Gromov, Pseudoholomorphic curves in symplectic manifolds,, \emph{Invent. Math.}, 82 (1985), 307. doi: 10.1007/BF01388806.

[5]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher, (1994). doi: 10.1007/978-3-0348-8540-9.

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().

[8]

Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group,, \emph{Duke Math. J.}, 130 (2005), 199.

[9]

M. Usher, The sharp energy-capacity inequality,, \emph{Comm. Contemp. Math.}, 12 (2010), 457. doi: 10.1142/S0219199710003889.

[10]

S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds,, \emph{J. Topol. Anal.}, 4 (2012), 481. doi: 10.1142/S1793525312500215.

[1]

Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure & Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37

[2]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[3]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[4]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[5]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[6]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[7]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[8]

Fengmin Xu, Yanfei Wang. Recovery of seismic wavefields by an lq-norm constrained regularization method. Inverse Problems & Imaging, 2018, 12 (5) : 1157-1172. doi: 10.3934/ipi.2018048

[9]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[10]

Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial & Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345

[11]

Heeralal Janwa, Fernando L. Piñero. On parameters of subfield subcodes of extended norm-trace codes. Advances in Mathematics of Communications, 2017, 11 (2) : 379-388. doi: 10.3934/amc.2017032

[12]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[13]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[14]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[15]

Roger Grimshaw, Dmitry Pelinovsky. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 557-566. doi: 10.3934/dcds.2014.34.557

[16]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[17]

Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008

[18]

Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg. Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks & Heterogeneous Media, 2017, 12 (1) : 59-92. doi: 10.3934/nhm.2017003

[19]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[20]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

2017 Impact Factor: 0.75

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]