2014, 21: 177-185. doi: 10.3934/era.2014.21.177

On the injectivity radius in Hofer's geometry

1. 

Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada

2. 

Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada

Received  April 2014 Revised  August 2014 Published  December 2014

In this note we consider the following conjecture: given any closed symplectic manifold $M$, there is a sufficiently small real positive number $\rho$ such that the open ball of radius $\rho$ in the Hofer metric centered at the identity on the group of Hamiltonian diffeomorphisms of $M$ is contractible, where the retraction takes place in that ball (this is the strong version of the conjecture) or inside the ambient group of Hamiltonian diffeomorphisms of $M$ (this is the weak version of the conjecture). We prove several results that support the weak form of the conjecture.
Citation: François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177
References:
[1]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, \emph{Ann. Math. (2), 92 (1970), 102. doi: 10.2307/1970699.

[2]

M. Gromov, Pseudo holomorphic curves in symplectic manifolds,, \emph{Invent. Math.}, 82 (1985), 307. doi: 10.1007/BF01388806.

[3]

J. Kędra and D. McDuff, Homotopy properties of Hamiltonian group actions,, \emph{Geom. Topol.}, 9 (2005), 121. doi: 10.2140/gt.2005.9.121.

[4]

, M. Khanevsky and F. Zapolsky,, Private communication., ().

[5]

F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: Energy and stability of Hamiltonian flows. Part II,, \emph{Invent. Math.}, 122 (1995), 35. doi: 10.1007/BF01231438.

[6]

F. Lalonde and C. Pestieau, Stabilisation of symplectic inequalities and applications,, in \emph{Northern California Symplectic Geometry Seminar}, (1999), 63.

[7]

L. Polterovich, Hofer's diameter and Lagrangian intersections,, \emph{Internat. Math. Res. Notices}, 4 (1998), 217. doi: 10.1155/S1073792898000178.

[8]

Y. Savelyev, Virtual Morse theory on $\Omega\text{Ham}(M, \omega)$,, \emph{J. Differ. Geom.}, 84 (2010), 409.

[9]

_____, Bott periodicity and stable quantum classes,, \emph{Selecta Math. (N.S.)}, 19 (2013), 439.

[10]

_____, Quantum characteristic classes and the Hofer metric,, \emph{Geom. Topol.}, 12 (2008), 2277.

[11]

P. Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings,, \emph{Geom. Funct. Anal.}, 7 (1997), 1046. doi: 10.1007/s000390050037.

[12]

Z. Shen, Lectures on Finsler Geometry,, World Scientific Publishing Co., (2001). doi: 10.1142/9789812811622.

show all references

References:
[1]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, \emph{Ann. Math. (2), 92 (1970), 102. doi: 10.2307/1970699.

[2]

M. Gromov, Pseudo holomorphic curves in symplectic manifolds,, \emph{Invent. Math.}, 82 (1985), 307. doi: 10.1007/BF01388806.

[3]

J. Kędra and D. McDuff, Homotopy properties of Hamiltonian group actions,, \emph{Geom. Topol.}, 9 (2005), 121. doi: 10.2140/gt.2005.9.121.

[4]

, M. Khanevsky and F. Zapolsky,, Private communication., ().

[5]

F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: Energy and stability of Hamiltonian flows. Part II,, \emph{Invent. Math.}, 122 (1995), 35. doi: 10.1007/BF01231438.

[6]

F. Lalonde and C. Pestieau, Stabilisation of symplectic inequalities and applications,, in \emph{Northern California Symplectic Geometry Seminar}, (1999), 63.

[7]

L. Polterovich, Hofer's diameter and Lagrangian intersections,, \emph{Internat. Math. Res. Notices}, 4 (1998), 217. doi: 10.1155/S1073792898000178.

[8]

Y. Savelyev, Virtual Morse theory on $\Omega\text{Ham}(M, \omega)$,, \emph{J. Differ. Geom.}, 84 (2010), 409.

[9]

_____, Bott periodicity and stable quantum classes,, \emph{Selecta Math. (N.S.)}, 19 (2013), 439.

[10]

_____, Quantum characteristic classes and the Hofer metric,, \emph{Geom. Topol.}, 12 (2008), 2277.

[11]

P. Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings,, \emph{Geom. Funct. Anal.}, 7 (1997), 1046. doi: 10.1007/s000390050037.

[12]

Z. Shen, Lectures on Finsler Geometry,, World Scientific Publishing Co., (2001). doi: 10.1142/9789812811622.

[1]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[2]

Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electronic Research Announcements, 2014, 21: 1-7. doi: 10.3934/era.2014.21.1

[3]

Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811

[4]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[5]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[6]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[7]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[8]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[9]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[10]

Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

[11]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

[12]

Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032

[13]

Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77

[14]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[15]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[16]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[17]

Scott Crass. Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168. Journal of Modern Dynamics, 2007, 1 (2) : 175-203. doi: 10.3934/jmd.2007.1.175

[18]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[19]

Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems & Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001

[20]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]