\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces

Abstract / Introduction Related Papers Cited by
  • In this note we consider the problem of integrality of Zariski decompositions for pseudoeffective integral divisors on algebraic surfaces. We show that while sometimes integrality of Zariski decompositions forces all negative curves to be $(-1)$-curves, there are examples where this is not true.
    Mathematics Subject Classification: 14C20, 14M25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Bauer, P. Pokora and D. Schmitz, On the boundedness of the denominators in the Zariski decomposition on surfaces, Journal für die reine und angewandte Mathematik, (2015).doi: 10.1515/crelle-2015-0058.

    [2]

    T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora and T. Szemberg, Bounded negativity and arrangements of lines, Int. Math. Res. Notices IMRN, 2015 (2015), 9456-9471.

    [3]

    T. De Fernex, Negative curves on very general blow-ups of $\mathbbP^2$, in Projective Varieties with Unexpected Properties, Walter de Gruyter GmbH & Co. KG, Berlin, 2005, 199-207.

    [4]

    M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg and H. Tutaj-Gasińska, Resurgences for ideals of special point configurations in $P^N$ coming from hyperplane arrangements, J. Algebra, 443 (2015), 383-394.doi: 10.1016/j.jalgebra.2015.07.022.

    [5]

    T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 106-110.doi: 10.3792/pjaa.55.106.

    [6]

    B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, in Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1986, 95-111.

    [7]

    A. L. Knutsen, Smooth curves on projective $K3$ surfaces, Math. Scand., 90 (2002), 215-231.

    [8]

    O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2), 76 (1962), 560-615.doi: 10.2307/1970376.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return