Citation: |
[1] |
T. Bauer, P. Pokora and D. Schmitz, On the boundedness of the denominators in the Zariski decomposition on surfaces, Journal für die reine und angewandte Mathematik, (2015).doi: 10.1515/crelle-2015-0058. |
[2] |
T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora and T. Szemberg, Bounded negativity and arrangements of lines, Int. Math. Res. Notices IMRN, 2015 (2015), 9456-9471. |
[3] |
T. De Fernex, Negative curves on very general blow-ups of $\mathbbP^2$, in Projective Varieties with Unexpected Properties, Walter de Gruyter GmbH & Co. KG, Berlin, 2005, 199-207. |
[4] |
M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg and H. Tutaj-Gasińska, Resurgences for ideals of special point configurations in $P^N$ coming from hyperplane arrangements, J. Algebra, 443 (2015), 383-394.doi: 10.1016/j.jalgebra.2015.07.022. |
[5] |
T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 106-110.doi: 10.3792/pjaa.55.106. |
[6] |
B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, in Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1986, 95-111. |
[7] |
A. L. Knutsen, Smooth curves on projective $K3$ surfaces, Math. Scand., 90 (2002), 215-231. |
[8] |
O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2), 76 (1962), 560-615.doi: 10.2307/1970376. |