2015, 22: 55-75. doi: 10.3934/era.2015.22.55

Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result

1. 

Dipartimento di Matematica ed Applicazioni "R. Caccioppoli”, Università di Napoli "Federico II”, Monte Sant’Angelo – Via Cinthia I-80126 Napoli

Received  June 2014 Revised  February 2015 Published  August 2015

We improve a result in [9] by proving the existence of a positive measure set of $(3n-2)$-dimensional quasi-periodic motions in the spacial, planetary $(1+n)$-body problem away from co-planar, circular motions. We also prove that such quasi-periodic motions reach with continuity corresponding $(2n-1)$-dimensional ones of the planar problem, once the mutual inclinations go to zero (this is related to a speculation in [2]). The main tool is a full reduction of the SO(3)-symmetry, which retains symmetry by reflections and highlights a quasi-integrable structure, with a small remainder, independently of eccentricities and inclinations.
Citation: Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55
References:
[1]

K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman,, \emph{Regul. Chaotic Dyn.}, 6 (2001), 421. doi: 10.1070/RD2001v006n04ABEH000186.

[2]

V. I. Arnol'd, Small denominators and problems of stability of motion in classical and celestial mechanics,, \emph{Russian Math. Surveys}, 18 (1963), 85. doi: 10.1070/RM1963v018n06ABEH001143.

[3]

F. Boigey, Élimination des nœ uds dans le problème newtonien des quatre corps,, \emph{Celestial Mech.}, 27 (1982), 399. doi: 10.1007/BF01228562.

[4]

L. Chierchia, The Planetary N-Body Problem,, \emph{UNESCO Encyclopedia of Life Support Systems}, (2012).

[5]

L. Chierchia and G. Pinzari, Properly-degenerate KAM theory (following V. I. Arnold),, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 3 (2010), 545. doi: 10.3934/dcdss.2010.3.545.

[6]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised,, \emph{Celestial Mech. Dynam. Astronom.}, 109 (2011), 285. doi: 10.1007/s10569-010-9329-8.

[7]

L. Chierchia and G. Pinzari, Metric stability of the planetary N-body problem,, \emph{Proceedings of the International Congress of Mathematicians}, (2014).

[8]

L. Chierchia and G. Pinzari, Planetary Birkhoff normal forms,, \emph{J. Mod. Dyn.}, 5 (2011), 623.

[9]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori,, \emph{Invent. Math.}, 186 (2011), 1. doi: 10.1007/s00222-011-0313-z.

[10]

A. Deprit, Elimination of the nodes in problems of $n$ bodies,, \emph{Celestial Mech.}, 30 (1983), 181. doi: 10.1007/BF01234305.

[11]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman),, \emph{Ergodic Theory Dynam. Systems}, 24 (2004), 1521. doi: 10.1017/S0143385704000410.

[12]

J. Féjoz, On "Arnold's theorem'' on the stability of the solar system,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3555. doi: 10.3934/dcds.2013.33.3555.

[13]

J. Féjoz, On action-angle coordinates and the Poincaré coordinates,, \emph{Regul. Chaotic Dyn.}, 18 (2013), 703. doi: 10.1134/S1560354713060105.

[14]

S. Ferrer and C. Osácar, Harrington's Hamiltonian in the stellar problem of three bodies: Reductions, relative equilibria and bifurcations,, \emph{Celestial Mech. Dynam. Astronom.}, 58 (1994), 245. doi: 10.1007/BF00691977.

[15]

R. S. Harrington, The stellar three-body problem,, \emph{Celestial Mech. and Dyn. Astrronom}, 1 (1969), 200. doi: 10.1007/BF01228839.

[16]

M. R. Herman, Torsion du problème planétaire, edited by J. Féjoz, 2009., Available electronically at \url{http://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL61526_FonctionPerturbatrice_2009_02.pdf}., ().

[17]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Modern Birkhäuser Classics, (1994). doi: 10.1007/978-3-0348-0104-1.

[18]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps,, \emph{Astronomische Nachrichten}, 20 (1843), 81. doi: 10.1002/asna.18430200602.

[19]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, \emph{Dokl. Akad. Nauk SSSR (N. S.)}, 98 (1954), 527.

[20]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian,, \emph{Celestial Mech. Dynam. Astronom.}, 62 (1995), 193. doi: 10.1007/BF00692088.

[21]

M. L. Lidov and S. L. Ziglin, Non-restricted double-averaged three body problem in Hill's case,, \emph{Celestial Mech.}, 13 (1976), 471. doi: 10.1007/BF01229100.

[22]

F. Malige, P. Robutel and J. Laskar, Partial reduction in the $n$-body planetary problem using the angular momentum integral,, \emph{Celestial Mech. Dynam. Astronom.}, 84 (2002), 283. doi: 10.1023/A:1020392219443.

[23]

G. Pinzari, On the Kolmogorov set for many-body problems,, Ph.D thesis, (2009).

[24]

G. Pinzari, Aspects of the planetary Birkhoff normal form,, \emph{Regul. Chaotic Dyn.}, 18 (2013), 860. doi: 10.1134/S1560354713060178.

[25]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem,, \arXiv{1501.04470}., ().

[26]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, \emph{Math. Z.}, 213 (1993), 187. doi: 10.1007/BF03025718.

[27]

R. Radau, Sur une transformation des équations différentielles de la dynamique,, \emph{Ann. Sci. Éc. Norm. Sup.}, 5 (1868), 311.

[28]

P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions,, \emph{Celestial Mech. Dynam. Astronom.}, 62 (1995), 219. doi: 10.1007/BF00692089.

[29]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems,, \emph{Regul. Chaotic Dyn.}, 6 (2001), 119. doi: 10.1070/RD2001v006n02ABEH000169.

show all references

References:
[1]

K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman,, \emph{Regul. Chaotic Dyn.}, 6 (2001), 421. doi: 10.1070/RD2001v006n04ABEH000186.

[2]

V. I. Arnol'd, Small denominators and problems of stability of motion in classical and celestial mechanics,, \emph{Russian Math. Surveys}, 18 (1963), 85. doi: 10.1070/RM1963v018n06ABEH001143.

[3]

F. Boigey, Élimination des nœ uds dans le problème newtonien des quatre corps,, \emph{Celestial Mech.}, 27 (1982), 399. doi: 10.1007/BF01228562.

[4]

L. Chierchia, The Planetary N-Body Problem,, \emph{UNESCO Encyclopedia of Life Support Systems}, (2012).

[5]

L. Chierchia and G. Pinzari, Properly-degenerate KAM theory (following V. I. Arnold),, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 3 (2010), 545. doi: 10.3934/dcdss.2010.3.545.

[6]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised,, \emph{Celestial Mech. Dynam. Astronom.}, 109 (2011), 285. doi: 10.1007/s10569-010-9329-8.

[7]

L. Chierchia and G. Pinzari, Metric stability of the planetary N-body problem,, \emph{Proceedings of the International Congress of Mathematicians}, (2014).

[8]

L. Chierchia and G. Pinzari, Planetary Birkhoff normal forms,, \emph{J. Mod. Dyn.}, 5 (2011), 623.

[9]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori,, \emph{Invent. Math.}, 186 (2011), 1. doi: 10.1007/s00222-011-0313-z.

[10]

A. Deprit, Elimination of the nodes in problems of $n$ bodies,, \emph{Celestial Mech.}, 30 (1983), 181. doi: 10.1007/BF01234305.

[11]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman),, \emph{Ergodic Theory Dynam. Systems}, 24 (2004), 1521. doi: 10.1017/S0143385704000410.

[12]

J. Féjoz, On "Arnold's theorem'' on the stability of the solar system,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3555. doi: 10.3934/dcds.2013.33.3555.

[13]

J. Féjoz, On action-angle coordinates and the Poincaré coordinates,, \emph{Regul. Chaotic Dyn.}, 18 (2013), 703. doi: 10.1134/S1560354713060105.

[14]

S. Ferrer and C. Osácar, Harrington's Hamiltonian in the stellar problem of three bodies: Reductions, relative equilibria and bifurcations,, \emph{Celestial Mech. Dynam. Astronom.}, 58 (1994), 245. doi: 10.1007/BF00691977.

[15]

R. S. Harrington, The stellar three-body problem,, \emph{Celestial Mech. and Dyn. Astrronom}, 1 (1969), 200. doi: 10.1007/BF01228839.

[16]

M. R. Herman, Torsion du problème planétaire, edited by J. Féjoz, 2009., Available electronically at \url{http://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL61526_FonctionPerturbatrice_2009_02.pdf}., ().

[17]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Modern Birkhäuser Classics, (1994). doi: 10.1007/978-3-0348-0104-1.

[18]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps,, \emph{Astronomische Nachrichten}, 20 (1843), 81. doi: 10.1002/asna.18430200602.

[19]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, \emph{Dokl. Akad. Nauk SSSR (N. S.)}, 98 (1954), 527.

[20]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian,, \emph{Celestial Mech. Dynam. Astronom.}, 62 (1995), 193. doi: 10.1007/BF00692088.

[21]

M. L. Lidov and S. L. Ziglin, Non-restricted double-averaged three body problem in Hill's case,, \emph{Celestial Mech.}, 13 (1976), 471. doi: 10.1007/BF01229100.

[22]

F. Malige, P. Robutel and J. Laskar, Partial reduction in the $n$-body planetary problem using the angular momentum integral,, \emph{Celestial Mech. Dynam. Astronom.}, 84 (2002), 283. doi: 10.1023/A:1020392219443.

[23]

G. Pinzari, On the Kolmogorov set for many-body problems,, Ph.D thesis, (2009).

[24]

G. Pinzari, Aspects of the planetary Birkhoff normal form,, \emph{Regul. Chaotic Dyn.}, 18 (2013), 860. doi: 10.1134/S1560354713060178.

[25]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem,, \arXiv{1501.04470}., ().

[26]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, \emph{Math. Z.}, 213 (1993), 187. doi: 10.1007/BF03025718.

[27]

R. Radau, Sur une transformation des équations différentielles de la dynamique,, \emph{Ann. Sci. Éc. Norm. Sup.}, 5 (1868), 311.

[28]

P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions,, \emph{Celestial Mech. Dynam. Astronom.}, 62 (1995), 219. doi: 10.1007/BF00692089.

[29]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems,, \emph{Regul. Chaotic Dyn.}, 6 (2001), 119. doi: 10.1070/RD2001v006n02ABEH000169.

[1]

Claude Froeschlé, Massimiliano Guzzo, Elena Lega. First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 687-698. doi: 10.3934/dcdsb.2005.5.687

[2]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[3]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[4]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[5]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[6]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[7]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[8]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[9]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[10]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[11]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[12]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[13]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[14]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[15]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[17]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[18]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[19]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[20]

Nikolai Dokuchaev. Dimension reduction and Mutual Fund Theorem in maximin setting for bond market. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1039-1053. doi: 10.3934/dcdsb.2011.16.1039

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]