-
Previous Article
On the time decay in phase–lag thermoelasticity with two temperatures
- ERA Home
- This Volume
- Next Article
A conjecture on cluster automorphisms of cluster algebras
Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou, Zhejiang, 310027, China |
A cluster automorphism is a $ \mathbb{Z} $-algebra automorphism of a cluster algebra $ \mathcal A $ satisfying that it sends a cluster to another and commutes with mutations. Chang and Schiffler conjectured that a cluster automorphism of $ \mathcal A $ is just a $ \mathbb{Z} $-algebra homomorphism of a cluster algebra sending a cluster to another. The aim of this article is to prove this conjecture.
References:
[1] |
I. Assem, R. Schiffler and V. Shamchenko,
Cluster automorphisms, Proc. Lond. Math. Soc., 104 (2012), 1271-1302.
doi: 10.1112/plms/pdr049. |
[2] |
A. Berenstein, S. Fomin and A. Zelevinsky,
Cluster algebras Ⅲ: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), 1-52.
doi: 10.1215/S0012-7094-04-12611-9. |
[3] |
P. Cao and F. Li, The enough g-pairs property and denominator vectors of cluster algebras, preprint, arXiv: 1803.05281 [math.RT]. Google Scholar |
[4] |
P. Cao and F. Li, Unistructurality of cluster algebras, preprint, arXiv: 1809.05116 [math.RT]. Google Scholar |
[5] |
W. Chang and R. Schiffler, A note on cluster automorphism groups, preprint, arXiv: 1812.05034 [math.RT]. Google Scholar |
[6] |
W. Chang and B. Zhu,
Cluster automorphism groups of cluster algebras with coefficients, Sci. China Math., 59 (2016), 1919-1936.
doi: 10.1007/s11425-016-5148-z. |
[7] |
W. Chang and B. Zhu, Cluster automorphism groups and automorphism groups of exchange graphs, preprint, arXiv: 1506.02029 [math.RT]. Google Scholar |
[8] |
W. Chang and B. Zhu,
Cluster automorphism groups of cluster algebras of finite type, J. Algebra, 447 (2016), 490-515.
doi: 10.1016/j.jalgebra.2015.09.045. |
[9] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅰ: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[10] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅱ: Finite type classification, Invent. Math., 154 (2003), 63-121.
doi: 10.1007/s00222-003-0302-y. |
[11] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅳ: Coefficients, Compos. Math., 143 (2007), 112-164.
doi: 10.1112/S0010437X06002521. |
[12] |
M. Gross, P. Hacking, S. Keel and M. Kontsevich,
Canonical bases for cluster algebras, J. Amer. Math. Soc., 31 (2018), 497-608.
doi: 10.1090/jams/890. |
[13] |
M. Huang, F. Li and Y. Yang,
On structure of sign-skew-symmetric cluster algebras of geometric type, Ⅰ: In view of sub-seeds and seed homomorphisms, Sci. China Math., 61 (2018), 831-854.
doi: 10.1007/s11425-016-9100-8. |
[14] |
F. Li and S. Liu, Periodicities in cluster algebras and cluster automorphism groups, preprint, arXiv: 1903.00893 [math.RT]. Google Scholar |
[15] |
K. Lee and R. Schiffler,
Positivity for cluster algebras, Ann. of Math., 182 (2015), 73-125.
doi: 10.4007/annals.2015.182.1.2. |
[16] |
I. Saleh,
Exchange maps of cluster algebras, Int. Electron. J. Algebra, 16 (2014), 1-15.
doi: 10.24330/ieja.266223. |
show all references
References:
[1] |
I. Assem, R. Schiffler and V. Shamchenko,
Cluster automorphisms, Proc. Lond. Math. Soc., 104 (2012), 1271-1302.
doi: 10.1112/plms/pdr049. |
[2] |
A. Berenstein, S. Fomin and A. Zelevinsky,
Cluster algebras Ⅲ: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), 1-52.
doi: 10.1215/S0012-7094-04-12611-9. |
[3] |
P. Cao and F. Li, The enough g-pairs property and denominator vectors of cluster algebras, preprint, arXiv: 1803.05281 [math.RT]. Google Scholar |
[4] |
P. Cao and F. Li, Unistructurality of cluster algebras, preprint, arXiv: 1809.05116 [math.RT]. Google Scholar |
[5] |
W. Chang and R. Schiffler, A note on cluster automorphism groups, preprint, arXiv: 1812.05034 [math.RT]. Google Scholar |
[6] |
W. Chang and B. Zhu,
Cluster automorphism groups of cluster algebras with coefficients, Sci. China Math., 59 (2016), 1919-1936.
doi: 10.1007/s11425-016-5148-z. |
[7] |
W. Chang and B. Zhu, Cluster automorphism groups and automorphism groups of exchange graphs, preprint, arXiv: 1506.02029 [math.RT]. Google Scholar |
[8] |
W. Chang and B. Zhu,
Cluster automorphism groups of cluster algebras of finite type, J. Algebra, 447 (2016), 490-515.
doi: 10.1016/j.jalgebra.2015.09.045. |
[9] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅰ: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[10] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅱ: Finite type classification, Invent. Math., 154 (2003), 63-121.
doi: 10.1007/s00222-003-0302-y. |
[11] |
S. Fomin and A. Zelevinsky,
Cluster algebras Ⅳ: Coefficients, Compos. Math., 143 (2007), 112-164.
doi: 10.1112/S0010437X06002521. |
[12] |
M. Gross, P. Hacking, S. Keel and M. Kontsevich,
Canonical bases for cluster algebras, J. Amer. Math. Soc., 31 (2018), 497-608.
doi: 10.1090/jams/890. |
[13] |
M. Huang, F. Li and Y. Yang,
On structure of sign-skew-symmetric cluster algebras of geometric type, Ⅰ: In view of sub-seeds and seed homomorphisms, Sci. China Math., 61 (2018), 831-854.
doi: 10.1007/s11425-016-9100-8. |
[14] |
F. Li and S. Liu, Periodicities in cluster algebras and cluster automorphism groups, preprint, arXiv: 1903.00893 [math.RT]. Google Scholar |
[15] |
K. Lee and R. Schiffler,
Positivity for cluster algebras, Ann. of Math., 182 (2015), 73-125.
doi: 10.4007/annals.2015.182.1.2. |
[16] |
I. Saleh,
Exchange maps of cluster algebras, Int. Electron. J. Algebra, 16 (2014), 1-15.
doi: 10.24330/ieja.266223. |
[1] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[2] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[3] |
Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020 doi: 10.3934/mfc.2021001 |
[4] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]