May  2008, 2(2): 205-224. doi: 10.3934/ipi.2008.2.205

A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611, United States, United States

2. 

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, United States

3. 

Department of Psychiatry & Neuroscience, University of Florida, Gainesville, FL 32653, United States

Received  May 2007 Revised  December 2007 Published  April 2008

We present a new variational framework for simultaneous smoothing and estimation of apparent diffusion coefficient (ADC) profiles from High Angular Resolution Diffusion-weighted MRI. The model approximates the ADC profiles at each voxel by a 4th order spherical harmonic series (SHS). The coefficients in SHS are obtained by solving a constrained minimization problem. The smoothing with feature preserved is achieved by minimizing a variable exponent, linear growth functional, and the data constraint is determined by the original Stejskal-Tanner equation. The antipodal symmetry and positiveness of the ADC are accommodated in the model. We use these coefficients and variance of the ADC profiles from its mean to classify the diffusion in each voxel as isotropic, anisotropic with single fiber orientation, or two fiber orientations. The proposed model has been applied to both simulated data and HARD MRI human brain data . The experiments demonstrated the effectiveness of our method in estimation and smoothing of ADC profiles and in enhancement of diffusion anisotropy. Further characterization of non-Gaussian diffusion based on the proposed model showed a consistency between our results and known neuroanatomy.
Citation: Yunmei Chen, Weihong Guo, Qingguo Zeng, Yijun Liu. A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Problems & Imaging, 2008, 2 (2) : 205-224. doi: 10.3934/ipi.2008.2.205
References:
[1]

D. LeBihan and P. J. Basser, Molecular diffusion and nuclear magnetic resonance,, Diffusion and perfusion magnetic resonance imaging, (1995). Google Scholar

[2]

M. E. Moseley, Y. Cohen, J. Mintorovitch, J. L. Chileuitt, D. Norman and P. Weinstein, Evidence of anisotropic self-diffusion in cat brain,, Proc. of the 8th ISMRM, (1989), 136. Google Scholar

[3]

M. E. Moseley, J. Kucharczyk, H. S. Asgari and D. Norman, Anisotropy in diffusion weighted MRI,, Magn. Reson. Med., 19 (1991), 321. doi: 10.1002/mrm.1910190222. Google Scholar

[4]

P. J. Basser and C. Pierpaoli, Microstructual and physiological features of tissues elucidated by quantitative diffusion tensor {MRI},, Magn. Reson. Med., 111(B) (1996), 209. Google Scholar

[5]

E. O. Stejskal and J. E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient,, Chem. Phys., 42 (1965), 288. Google Scholar

[6]

P. J. Basser, J. Mattiello and D. LeBihan, MR diffusion tensor spectroscopy and imaging,, Biophys, 66 (1994), 259. doi: 10.1016/S0006-3495(94)80775-1. Google Scholar

[7]

D. S. Tuch, R. M. Weisskoff, J. W. Belliveau and V. J. Wedeen, High angular resolution diffusion imaging of the human brain,, Proc. of the 7th ISMRM, (1999), 321. Google Scholar

[8]

V. J. Wedeen, T. G. Reese, D. S. Tuch, M. R. Weigel, J.-G. Dou, R. M. Weisskoff and D. Chesler, Mapping fiber orientation spectra in cerebral white matter with fourier transform diffusion {MRI},, Proc. of the 8th ISMRM, (2000), 82. Google Scholar

[9]

P. J. Basser, J. Mattiello and D. Lebihan, Estimation of the effective self-diffusion tensor from the NMR,, Spin Echo. J. Magn. Reson., 103 (1994), 247. Google Scholar

[10]

T. L. Chenevert, J. A. Brunberg and J. G. Pipe, Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo,, Radiology, 177 (1990), 401. Google Scholar

[11]

E. W. Hsu and S. Mori, Analytical expression for the NMR apparent diffusion coefficients in an anisotropy system and a simplified method for determing fiber orientation,, Magn. Reson. Med., 34 (1995), 194. doi: 10.1002/mrm.1910340210. Google Scholar

[12]

L. Frank, Characterization of anisotropy in high angular resolution diffusion weighted mri,, in, (2001). Google Scholar

[13]

A. L. Alexander, K. M. Hasan, M. Lazar, J. S. Tsuruda and D. L. Parker, Analysis of partial volume effects in diffusion-tensor MRI,, Magn. Reson. Med., 45 (2001), 770. doi: 10.1002/mrm.1105. Google Scholar

[14]

L. Frank, Anisotropy in high angular resolution diffusion-weighted MRI,, Magn. Reson. Med., 45 (2001), 935. doi: 10.1002/mrm.1125. Google Scholar

[15]

D. C. Alexander, G. J. Barker and S. R. Arridge, Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data,, Magn. Reson. Med., 48 (2002), 331. doi: 10.1002/mrm.10209. Google Scholar

[16]

Y. Chen, W. Guo, Q. Zeng, X. Yan, F. Huang, H. Zhang, G. He, B. Vemuri and Y. Liu, Estimation, smoothing, and charaterization of apparent diffusion coefficient profiles from high angular resolution DWI,, Proc. of CVPR, (2004), 588. Google Scholar

[17]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm,, Physica D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[18]

P. Blomgren, T. Chan, P. Mulet and C. K. Wong, Total variation image restoration: Numerical methods and extensions,, Proceeding of IEEE Int'l Conference on Image Processing, 3 (1997), 384. Google Scholar

[19]

A. Chambolle and P-L.Lions, Image recovery via total variation minimization and related problems,, Numerische Mathematik, 76 (1997), 167. doi: 10.1007/s002110050258. Google Scholar

[20]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM Journal of AMath., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[21]

P. Blomgren and T. Chan, Color TV: total variation methods for restoration of vector-valued images,, IEEE Trans. on Image Processing, 7 (1998), 304. doi: 10.1109/83.661180. Google Scholar

[22]

Z. Wang, B. C. Vemuri, Y. Chen and T. Mareci, A constrained variational principle for direct estimation and smoothing of the tensor field from complex DWI,, IEEE TMI, 23 (2004), 930. Google Scholar

[23]

J. Weickert, B. Romeny and M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering,, IEEE Trans. on Img. Proc., 7 (1998), 398. Google Scholar

[24]

T. Lu, P. Neittaanm and X. Tai, A parallel splitting up method and its application to Navier-Stokes equations,, Applied Mathematics Letters, 4 (1991), 25. doi: 10.1016/0893-9659(91)90161-N. Google Scholar

[25]

T. F. Chan and L. A. Vese, Active contours without edges,, IEEE Trans. Image Processing, 10 (2001), 266. doi: 10.1109/83.902291. Google Scholar

[26]

S. D. Conte and C. DeBoor, "Elementary Numerical Analysis,", McGraw-Hill, (1972). Google Scholar

show all references

References:
[1]

D. LeBihan and P. J. Basser, Molecular diffusion and nuclear magnetic resonance,, Diffusion and perfusion magnetic resonance imaging, (1995). Google Scholar

[2]

M. E. Moseley, Y. Cohen, J. Mintorovitch, J. L. Chileuitt, D. Norman and P. Weinstein, Evidence of anisotropic self-diffusion in cat brain,, Proc. of the 8th ISMRM, (1989), 136. Google Scholar

[3]

M. E. Moseley, J. Kucharczyk, H. S. Asgari and D. Norman, Anisotropy in diffusion weighted MRI,, Magn. Reson. Med., 19 (1991), 321. doi: 10.1002/mrm.1910190222. Google Scholar

[4]

P. J. Basser and C. Pierpaoli, Microstructual and physiological features of tissues elucidated by quantitative diffusion tensor {MRI},, Magn. Reson. Med., 111(B) (1996), 209. Google Scholar

[5]

E. O. Stejskal and J. E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient,, Chem. Phys., 42 (1965), 288. Google Scholar

[6]

P. J. Basser, J. Mattiello and D. LeBihan, MR diffusion tensor spectroscopy and imaging,, Biophys, 66 (1994), 259. doi: 10.1016/S0006-3495(94)80775-1. Google Scholar

[7]

D. S. Tuch, R. M. Weisskoff, J. W. Belliveau and V. J. Wedeen, High angular resolution diffusion imaging of the human brain,, Proc. of the 7th ISMRM, (1999), 321. Google Scholar

[8]

V. J. Wedeen, T. G. Reese, D. S. Tuch, M. R. Weigel, J.-G. Dou, R. M. Weisskoff and D. Chesler, Mapping fiber orientation spectra in cerebral white matter with fourier transform diffusion {MRI},, Proc. of the 8th ISMRM, (2000), 82. Google Scholar

[9]

P. J. Basser, J. Mattiello and D. Lebihan, Estimation of the effective self-diffusion tensor from the NMR,, Spin Echo. J. Magn. Reson., 103 (1994), 247. Google Scholar

[10]

T. L. Chenevert, J. A. Brunberg and J. G. Pipe, Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo,, Radiology, 177 (1990), 401. Google Scholar

[11]

E. W. Hsu and S. Mori, Analytical expression for the NMR apparent diffusion coefficients in an anisotropy system and a simplified method for determing fiber orientation,, Magn. Reson. Med., 34 (1995), 194. doi: 10.1002/mrm.1910340210. Google Scholar

[12]

L. Frank, Characterization of anisotropy in high angular resolution diffusion weighted mri,, in, (2001). Google Scholar

[13]

A. L. Alexander, K. M. Hasan, M. Lazar, J. S. Tsuruda and D. L. Parker, Analysis of partial volume effects in diffusion-tensor MRI,, Magn. Reson. Med., 45 (2001), 770. doi: 10.1002/mrm.1105. Google Scholar

[14]

L. Frank, Anisotropy in high angular resolution diffusion-weighted MRI,, Magn. Reson. Med., 45 (2001), 935. doi: 10.1002/mrm.1125. Google Scholar

[15]

D. C. Alexander, G. J. Barker and S. R. Arridge, Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data,, Magn. Reson. Med., 48 (2002), 331. doi: 10.1002/mrm.10209. Google Scholar

[16]

Y. Chen, W. Guo, Q. Zeng, X. Yan, F. Huang, H. Zhang, G. He, B. Vemuri and Y. Liu, Estimation, smoothing, and charaterization of apparent diffusion coefficient profiles from high angular resolution DWI,, Proc. of CVPR, (2004), 588. Google Scholar

[17]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm,, Physica D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[18]

P. Blomgren, T. Chan, P. Mulet and C. K. Wong, Total variation image restoration: Numerical methods and extensions,, Proceeding of IEEE Int'l Conference on Image Processing, 3 (1997), 384. Google Scholar

[19]

A. Chambolle and P-L.Lions, Image recovery via total variation minimization and related problems,, Numerische Mathematik, 76 (1997), 167. doi: 10.1007/s002110050258. Google Scholar

[20]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM Journal of AMath., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[21]

P. Blomgren and T. Chan, Color TV: total variation methods for restoration of vector-valued images,, IEEE Trans. on Image Processing, 7 (1998), 304. doi: 10.1109/83.661180. Google Scholar

[22]

Z. Wang, B. C. Vemuri, Y. Chen and T. Mareci, A constrained variational principle for direct estimation and smoothing of the tensor field from complex DWI,, IEEE TMI, 23 (2004), 930. Google Scholar

[23]

J. Weickert, B. Romeny and M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering,, IEEE Trans. on Img. Proc., 7 (1998), 398. Google Scholar

[24]

T. Lu, P. Neittaanm and X. Tai, A parallel splitting up method and its application to Navier-Stokes equations,, Applied Mathematics Letters, 4 (1991), 25. doi: 10.1016/0893-9659(91)90161-N. Google Scholar

[25]

T. F. Chan and L. A. Vese, Active contours without edges,, IEEE Trans. Image Processing, 10 (2001), 266. doi: 10.1109/83.902291. Google Scholar

[26]

S. D. Conte and C. DeBoor, "Elementary Numerical Analysis,", McGraw-Hill, (1972). Google Scholar

[1]

Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems & Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885

[2]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[3]

Zhichang Guo, Wenjuan Yao, Jiebao Sun, Boying Wu. Nonlinear fractional diffusion model for deblurring images with textures. Inverse Problems & Imaging, 2019, 13 (6) : 1161-1188. doi: 10.3934/ipi.2019052

[4]

Guillaume Bal, Jiaming Chen, Anthony B. Davis. Reconstruction of cloud geometry from high-resolution multi-angle images. Inverse Problems & Imaging, 2018, 12 (2) : 261-280. doi: 10.3934/ipi.2018011

[5]

Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625

[6]

Alfred K. Louis. Diffusion reconstruction from very noisy tomographic data. Inverse Problems & Imaging, 2010, 4 (4) : 675-683. doi: 10.3934/ipi.2010.4.675

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019107

[8]

Marc C. Robini, Yuemin Zhu, Jianhua Luo. Edge-preserving reconstruction with contour-line smoothing and non-quadratic data-fidelity. Inverse Problems & Imaging, 2013, 7 (4) : 1331-1366. doi: 10.3934/ipi.2013.7.1331

[9]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[10]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[11]

Jesus Ildefonso Díaz, David Gómez-Castro, Jean Michel Rakotoson, Roger Temam. Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 509-546. doi: 10.3934/dcds.2018023

[12]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[13]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[14]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[15]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[16]

Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377

[17]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[18]

Andrew M. Zimmer. Compact asymptotically harmonic manifolds. Journal of Modern Dynamics, 2012, 6 (3) : 377-403. doi: 10.3934/jmd.2012.6.377

[19]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[20]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]