 Previous Article
 IPI Home
 This Issue

Next Article
Resonances and balls in obstacle scattering with Neumann boundary conditions
An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semiinfinite regions
1.  Faculty of Applied Mathematics and Computer Science, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine 
2.  School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom 
References:
[1] 
G. Bastay, T. Johansson, V. A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system,, ZAMM, 86 (2006), 268. doi: 10.1002/zamm.200410238. 
[2] 
J. Baumeister and A. Leitāo, On iterative methods for solving illposed problems modeled by partial differential equations,, J. Inv. IllPosed Probl., 9 (2001), 13. 
[3] 
A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16. doi: 10.2307/2372819. 
[4] 
T. Carleman, Sur un probléme d'unicité pur les systémes d'équations aux dérivées partielles á deux variables indépendantes, (French), Ark. Mat., 26 (1939), 1. 
[5] 
R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, in "World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics,, Vol. 2'' (ed. Agarwal), 2 (1993), 127. 
[6] 
H. W. Engl and A. Leitāo, A Mann iterative regularization method for elliptic Cauchy problems,, Numer. Funct. Anal. Optim., 22 (2001), 861. doi: 10.1081/NFA100108313. 
[7] 
U. Hämarik and T. Raus, On the choice of the regularization parameter in illposed problems with approximately given noise level of data,, J. Inverse IllPosed Probl., 14 (2006), 251. doi: 10.1515/156939406777340928. 
[8] 
M. A. Jawson and G. Symm, "Integral Equations Methods in Potential Theory and Elastostatics,'', Academic Press, (1977). 
[9] 
M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem,, Numer. Algorithms, 21 (1999), 247. doi: 10.1023/A:1019134102565. 
[10] 
V. A. Kozlov and V. G. Maz'ya, On iterative procedures for solving illposed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144. 
[11] 
V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64. 
[12] 
R. Kress, "Linear Integral Equations,", 2nd edition, (1999). 
[13] 
D. Lesnic, L. Elliot and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation,, Eng. Anal. Bound. Elem., 20 (1997), 123. doi: 10.1016/S09557997(97)000568. 
[14] 
W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000). 
[15] 
D. Maxwell, M. Truffer, S. Avdonin and M. Stuefer, Determining glacier velocities and stresses with inverse methods: an iterative scheme,, to appear in Journal of Glaciology., (). 
[16] 
C. Miranda, "Partial Differential Equations of Elliptic Type,'', SpringerVerlag, (1970). 
[17] 
A. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists,'', Chapman & Hall/CRC Press, (2002). 
[18] 
F. Stenger, "Numerical Methods Based on Sinc and Analytic Functions,'', SpringerVerlag, (1993). 
[19] 
G. M. Vainikko and A. Y. Veretennikov, "Iteration Procedures in IllPosed Problems,'', Nauka Publ., (1986). 
show all references
References:
[1] 
G. Bastay, T. Johansson, V. A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system,, ZAMM, 86 (2006), 268. doi: 10.1002/zamm.200410238. 
[2] 
J. Baumeister and A. Leitāo, On iterative methods for solving illposed problems modeled by partial differential equations,, J. Inv. IllPosed Probl., 9 (2001), 13. 
[3] 
A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16. doi: 10.2307/2372819. 
[4] 
T. Carleman, Sur un probléme d'unicité pur les systémes d'équations aux dérivées partielles á deux variables indépendantes, (French), Ark. Mat., 26 (1939), 1. 
[5] 
R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, in "World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics,, Vol. 2'' (ed. Agarwal), 2 (1993), 127. 
[6] 
H. W. Engl and A. Leitāo, A Mann iterative regularization method for elliptic Cauchy problems,, Numer. Funct. Anal. Optim., 22 (2001), 861. doi: 10.1081/NFA100108313. 
[7] 
U. Hämarik and T. Raus, On the choice of the regularization parameter in illposed problems with approximately given noise level of data,, J. Inverse IllPosed Probl., 14 (2006), 251. doi: 10.1515/156939406777340928. 
[8] 
M. A. Jawson and G. Symm, "Integral Equations Methods in Potential Theory and Elastostatics,'', Academic Press, (1977). 
[9] 
M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem,, Numer. Algorithms, 21 (1999), 247. doi: 10.1023/A:1019134102565. 
[10] 
V. A. Kozlov and V. G. Maz'ya, On iterative procedures for solving illposed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144. 
[11] 
V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64. 
[12] 
R. Kress, "Linear Integral Equations,", 2nd edition, (1999). 
[13] 
D. Lesnic, L. Elliot and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation,, Eng. Anal. Bound. Elem., 20 (1997), 123. doi: 10.1016/S09557997(97)000568. 
[14] 
W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000). 
[15] 
D. Maxwell, M. Truffer, S. Avdonin and M. Stuefer, Determining glacier velocities and stresses with inverse methods: an iterative scheme,, to appear in Journal of Glaciology., (). 
[16] 
C. Miranda, "Partial Differential Equations of Elliptic Type,'', SpringerVerlag, (1970). 
[17] 
A. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists,'', Chapman & Hall/CRC Press, (2002). 
[18] 
F. Stenger, "Numerical Methods Based on Sinc and Analytic Functions,'', SpringerVerlag, (1993). 
[19] 
G. M. Vainikko and A. Y. Veretennikov, "Iteration Procedures in IllPosed Problems,'', Nauka Publ., (1986). 
[1] 
Yanqun Liu, MingFang Ding. A ladder method for linear semiinfinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397412. doi: 10.3934/jimo.2014.10.397 
[2] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[3] 
Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semiinfinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219233. doi: 10.3934/jimo.2005.1.219 
[4] 
Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 2538. doi: 10.3934/ipi.2012.6.25 
[5] 
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143153. doi: 10.3934/jimo.2008.4.143 
[6] 
Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 2016, 9 (2) : 237249. doi: 10.3934/krm.2016.9.237 
[7] 
Van Duong Dinh. On the Cauchy problem for the nonlinear semirelativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems  A, 2018, 38 (3) : 11271143. doi: 10.3934/dcds.2018047 
[8] 
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. Firstorder optimality conditions for convex semiinfinite minmax programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851866. doi: 10.3934/jimo.2009.5.851 
[9] 
Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 14231431. doi: 10.3934/proc.2011.2011.1423 
[10] 
ChiuYa Lan, HueyEr Lin, ShihHsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167183. doi: 10.3934/nhm.2006.1.167 
[11] 
V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems  A, 2004, 10 (3) : 731753. doi: 10.3934/dcds.2004.10.731 
[12] 
Adrien Dekkers, Anna RozanovaPierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 277307. doi: 10.3934/dcds.2019012 
[13] 
Út V. Lê. ContractionGalerkin method for a semilinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141160. doi: 10.3934/cpaa.2010.9.141 
[14] 
Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems  S, 2015, 8 (3) : 435473. doi: 10.3934/dcdss.2015.8.435 
[15] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[16] 
Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional nonlinear biological models. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 487502. doi: 10.3934/dcdss.2019032 
[17] 
Claude Bardos, Nicolas Besse. The Cauchy problem for the VlasovDiracBenney equation and related issues in fluid mechanics and semiclassical limits. Kinetic & Related Models, 2013, 6 (4) : 893917. doi: 10.3934/krm.2013.6.893 
[18] 
Yue Lu, YingEn Ge, LiWei Zhang. An alternating direction method for solving a class of inverse semidefinite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317336. doi: 10.3934/jimo.2016.12.317 
[19] 
Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 35033519. doi: 10.3934/dcds.2017149 
[20] 
Nadia Lekrine, ChaoJiang Xu. Gevrey regularizing effect of the Cauchy problem for noncutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647666. doi: 10.3934/krm.2009.2.647 
2017 Impact Factor: 1.465
Tools
Metrics
Other articles
by authors
[Back to Top]