Citation: |
[1] |
G. Bastay, T. Johansson, V. A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system, ZAMM, 86 (2006), 268-280.doi: 10.1002/zamm.200410238. |
[2] |
J. Baumeister and A. Leitāo, On iterative methods for solving ill-posed problems modeled by partial differential equations, J. Inv. Ill-Posed Probl., 9 (2001), 13-29. |
[3] |
A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), 16-36.doi: 10.2307/2372819. |
[4] |
T. Carleman, Sur un probléme d'unicité pur les systémes d'équations aux dérivées partielles á deux variables indépendantes, (French) Ark. Mat., Astr. Fys., 26 (1939), 1-9. |
[5] |
R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, in "World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics, Vol. 2'' (ed. Agarwal), World Scientific, Singapore, (1993), 127-140. |
[6] |
H. W. Engl and A. Leitāo, A Mann iterative regularization method for elliptic Cauchy problems, Numer. Funct. Anal. Optim., 22 (2001), 861-884.doi: 10.1081/NFA-100108313. |
[7] |
U. Hämarik and T. Raus, On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data, J. Inverse Ill-Posed Probl., 14 (2006), 251-266.doi: 10.1515/156939406777340928. |
[8] |
M. A. Jawson and G. Symm, "Integral Equations Methods in Potential Theory and Elastostatics,'' Academic Press, London, 1977. |
[9] |
M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem, Numer. Algorithms, 21 (1999), 247-260.doi: 10.1023/A:1019134102565. |
[10] |
V. A. Kozlov and V. G. Maz'ya, On iterative procedures for solving ill-posed boundary value problems that preserve differential equations, Algebra i Analiz, 1 (1989), 144-170. English transl.: Leningrad Math. J., 1 (1990), 1207-1228. |
[11] |
V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64-74. English transl.: U.S.S.R. Comput. Math. and Math. Phys., 31 (1991), 45-52. |
[12] |
R. Kress, "Linear Integral Equations," 2nd edition, Springer-Verlag, Heidelberg 1999. |
[13] |
D. Lesnic, L. Elliot and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation, Eng. Anal. Bound. Elem., 20 (1997), 123-133.doi: 10.1016/S0955-7997(97)00056-8. |
[14] |
W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'' Cambridge University Press, 2000. |
[15] |
D. Maxwell, M. Truffer, S. Avdonin and M. Stuefer, Determining glacier velocities and stresses with inverse methods: an iterative scheme, to appear in Journal of Glaciology. |
[16] |
C. Miranda, "Partial Differential Equations of Elliptic Type,'' Springer-Verlag, New-York, 1970. |
[17] |
A. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists,'' Chapman & Hall/CRC Press, 2002. |
[18] |
F. Stenger, "Numerical Methods Based on Sinc and Analytic Functions,'' Springer-Verlag, Heidelberg, 1993. |
[19] |
G. M. Vainikko and A. Y. Veretennikov, "Iteration Procedures in Ill-Posed Problems,'' Nauka Publ., Moscow, 1986 (in Russian). |