2008, 2(3): 397-409. doi: 10.3934/ipi.2008.2.397

On the regularization of the inverse conductivity problem with discontinuous conductivities

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio, 12/1, 34127 Trieste, Italy

Received  May 2008 Revised  June 2008 Published  July 2008

We consider the regularization of the inverse conductivity problem with discontinuous conductivities, like for example the so-called inclusion problem. We theoretically validate the use of some of the most widely adopted regularization operators, like for instance total variation and the Mumford-Shah functional, by proving a convergence result for the solutions to the regularized minimum problems.
Citation: Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397
References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems,, Inverse Problems, 10 (1994), 1217. doi: 10.1088/0266-5611/10/6/003.

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1975).

[3]

G. Alessandrini, Open issues of stability for the inverse conductivity problem,, J. Inverse Ill-Posed Probl., 15 (2007), 451. doi: 10.1515/jiip.2007.025.

[4]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200. doi: 10.1137/S003614100444191X.

[5]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Clarendon Press, (2000).

[6]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265. doi: 10.4007/annals.2006.163.265.

[7]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. Partial Differential Equations, 30 (2005), 207. doi: 10.1081/PDE-200044485.

[8]

H. Attouch, "Variational Convergence for Functions and Operators,'', Pitman Publishing, (1984).

[9]

A. Braides, "$\Gamma$-convergence for Beginners,'', Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[10]

T. F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients,, J. Comput. Phys., 193 (2004), 40. doi: 10.1016/j.jcp.2003.08.003.

[11]

G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation,, ESAIM Control Optim. Calc. Var., 2 (1997), 359. doi: 10.1051/cocv:1997113.

[12]

E. T. Chung, T. F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization,, J. Comput. Phys., 205 (2005), 357. doi: 10.1016/j.jcp.2004.11.022.

[13]

G. Dal Maso, "An Introduction to $\Gamma$-convergence,'', Birkhäuser, (1993).

[14]

M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems,, Inverse Problems, 19 (2003), 685. doi: 10.1088/0266-5611/19/3/313.

[15]

D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography,, Inverse Problems, 10 (1994), 317. doi: 10.1088/0266-5611/10/2/008.

[16]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'', Kluwer Academic Publishers, (1996).

[17]

T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations,, Rend. Mat. Appl. (7), 19 (1999), 471.

[18]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient,, Comm. Pure Appl. Math., 41 (1988), 865. doi: 10.1002/cpa.3160410702.

[19]

R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior results,, Comm. Pure Appl. Math., 38 (1985), 643. doi: 10.1002/cpa.3160380513.

[20]

A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: a numerical study,, Inverse Problems, 22 (2006), 1967. doi: 10.1088/0266-5611/22/6/004.

[21]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189.

[22]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Comm. Pure Appl. Math., 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[23]

L. Rondi, A variational approach to the reconstruction of cracks by boundary measurements,, J. Math. Pures Appl. (9), 87 (2007), 324. doi: 10.1016/j.matpur.2007.01.007.

[24]

L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional,, ESAIM Control Optim. Calc. Var., 6 (2001), 517. doi: 10.1051/cocv:2001121.

[25]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023. doi: 10.1137/0152060.

[26]

J. Sylvester, An anisotropic inverse boundary value problem,, Comm. Pure Appl. Math., 43 (1990), 201. doi: 10.1002/cpa.3160430203.

[27]

V. V. Vasin, Some tendencies in the Tikhonov regularization of ill-posed problems,, J. Inverse Ill-Posed Probl., 14 (2006), 813. doi: 10.1515/156939406779768328.

[28]

V. V. Vasin, Some approaches to reconstruction of nonsmooth solutions of linear ill-posed problems,, J. Inverse Ill-Posed Probl., 15 (2007), 625. doi: 10.1515/jiip.2007.035.

show all references

References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems,, Inverse Problems, 10 (1994), 1217. doi: 10.1088/0266-5611/10/6/003.

[2]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1975).

[3]

G. Alessandrini, Open issues of stability for the inverse conductivity problem,, J. Inverse Ill-Posed Probl., 15 (2007), 451. doi: 10.1515/jiip.2007.025.

[4]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200. doi: 10.1137/S003614100444191X.

[5]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Clarendon Press, (2000).

[6]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265. doi: 10.4007/annals.2006.163.265.

[7]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. Partial Differential Equations, 30 (2005), 207. doi: 10.1081/PDE-200044485.

[8]

H. Attouch, "Variational Convergence for Functions and Operators,'', Pitman Publishing, (1984).

[9]

A. Braides, "$\Gamma$-convergence for Beginners,'', Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[10]

T. F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients,, J. Comput. Phys., 193 (2004), 40. doi: 10.1016/j.jcp.2003.08.003.

[11]

G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation,, ESAIM Control Optim. Calc. Var., 2 (1997), 359. doi: 10.1051/cocv:1997113.

[12]

E. T. Chung, T. F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization,, J. Comput. Phys., 205 (2005), 357. doi: 10.1016/j.jcp.2004.11.022.

[13]

G. Dal Maso, "An Introduction to $\Gamma$-convergence,'', Birkhäuser, (1993).

[14]

M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems,, Inverse Problems, 19 (2003), 685. doi: 10.1088/0266-5611/19/3/313.

[15]

D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography,, Inverse Problems, 10 (1994), 317. doi: 10.1088/0266-5611/10/2/008.

[16]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'', Kluwer Academic Publishers, (1996).

[17]

T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations,, Rend. Mat. Appl. (7), 19 (1999), 471.

[18]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient,, Comm. Pure Appl. Math., 41 (1988), 865. doi: 10.1002/cpa.3160410702.

[19]

R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior results,, Comm. Pure Appl. Math., 38 (1985), 643. doi: 10.1002/cpa.3160380513.

[20]

A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: a numerical study,, Inverse Problems, 22 (2006), 1967. doi: 10.1088/0266-5611/22/6/004.

[21]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189.

[22]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Comm. Pure Appl. Math., 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[23]

L. Rondi, A variational approach to the reconstruction of cracks by boundary measurements,, J. Math. Pures Appl. (9), 87 (2007), 324. doi: 10.1016/j.matpur.2007.01.007.

[24]

L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional,, ESAIM Control Optim. Calc. Var., 6 (2001), 517. doi: 10.1051/cocv:2001121.

[25]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023. doi: 10.1137/0152060.

[26]

J. Sylvester, An anisotropic inverse boundary value problem,, Comm. Pure Appl. Math., 43 (1990), 201. doi: 10.1002/cpa.3160430203.

[27]

V. V. Vasin, Some tendencies in the Tikhonov regularization of ill-posed problems,, J. Inverse Ill-Posed Probl., 14 (2006), 813. doi: 10.1515/156939406779768328.

[28]

V. V. Vasin, Some approaches to reconstruction of nonsmooth solutions of linear ill-posed problems,, J. Inverse Ill-Posed Probl., 15 (2007), 625. doi: 10.1515/jiip.2007.035.

[1]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[2]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[3]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[4]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[5]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[6]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[7]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[8]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[9]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[10]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[11]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[12]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[13]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[14]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[15]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[16]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[17]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[18]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

[19]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[20]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]