November  2008, 2(4): 485-525. doi: 10.3934/ipi.2008.2.485

Two dimensional histogram analysis using the Helmholtz principle

1. 

NAWCWD - Physics and Computational Sciences, China Lake, CA 93555, United States, United States

2. 

University of California, ECE Department, Santa Barbara, CA 93555, United States

Received  May 2007 Revised  September 2008 Published  November 2008

An algorithm for two dimensional histogram modal analysis is presented. A major challenge in two dimensional histogram analysis is to provide an accurate location and description of the extended modal shape. The approach presented in this paper combines the Fast Level Set Transform of the histogram and the Helmholtz principle to find the location and shape of the modes. Furthermore, the algorithm is devoid of any a priori assumptions about the underlying density or the number of modes. At the core, this approach is a new way to manage and search the number of regions that must be examined to identify meaningful sets. Computational issues required a new tail sum bound on the multinomial distribution to be stated and proven. This bound reduces to the Höeffding inequality for the binomial distribution. The histogram segmentation procedure was applied to the two problems of image color segmentation and correlation pattern recognition. With no a priori knowledge about the color image assumed, the two dimensional modal analysis is applied to the CIELAB color space to find perceptually uniform dominant colors. The modal analysis is also extended to correlation pattern recognition to find multiple targets in a single correlation plane.
Citation: Arjuna Flenner, Gary A. Hewer, Charles S. Kenney. Two dimensional histogram analysis using the Helmholtz principle. Inverse Problems & Imaging, 2008, 2 (4) : 485-525. doi: 10.3934/ipi.2008.2.485
[1]

József Z. Farkas, Gary T. Smith, Glenn F. Webb. A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1203-1224. doi: 10.3934/mbe.2018055

[2]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[3]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[4]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[5]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[6]

Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003

[7]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[8]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[9]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[10]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[11]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[12]

Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155

[13]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[14]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[15]

Joshua Du. Kelvin-Helmholtz instability waves of supersonic multiple jets. Conference Publications, 2003, 2003 (Special) : 234-245. doi: 10.3934/proc.2003.2003.234

[16]

Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281

[17]

Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019031

[18]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-31. doi: 10.3934/dcdsb.2019063

[19]

Goro Akagi, Jun Kobayashi, Mitsuharu Ôtani. Principle of symmetric criticality and evolution equations. Conference Publications, 2003, 2003 (Special) : 1-10. doi: 10.3934/proc.2003.2003.1

[20]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

[Back to Top]