February  2008, 2(1): 63-81. doi: 10.3934/ipi.2008.2.63

Iterative time-reversal control for inverse problems

1. 

Helsinki University of Technology, Institute of Mathematics, P.O.Box 1100, 02015 TKK, Finland, Finland

2. 

University College London, Department of Mathematics, Gower Street, London, WC1E 6BT, United Kingdom

3. 

Tampere University of Technology,Institute of Mathematics,, P.O. Box 553, 33101 Tampere, Finland

Received  April 2007 Revised  June 2007 Published  January 2008

A novel method to solve inverse problems for the wave equation is introduced. The method is a combination of the boundary control method and an iterative time reversal scheme, leading to adaptive imaging of coefficient functions of the wave equation using focusing waves in unknown medium. The approach is computationally effective since the iteration lets the medium do most of the processing of the data.
    The iterative time reversal scheme also gives an algorithm for approximating a given wave in a subset of the domain without knowing the coefficients of the wave equation.
Citation: Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63
[1]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[2]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[3]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[4]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[5]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[6]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

[7]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[8]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[9]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[10]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[11]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[12]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[13]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[14]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[15]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[16]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[17]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[18]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[19]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[20]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (11)

[Back to Top]