May  2011, 5(2): 431-464. doi: 10.3934/ipi.2011.5.431

Recovering two Lamé kernels in a viscoelastic system

1. 

Dipartimento di Matematica “F. Enriques”, Universitá di Milano, via C. Saldini 50, 20133 Milano, Italy

2. 

Sobolev Institute of Mathematics, Siberian branch of Russian Academy of Sciences, Acad. Koptyug prosp., 4, Novosibirsk, 630090, Russian Federation

Received  September 2009 Revised  February 2011 Published  May 2011

Let $\mathcal B$ be a viscoelastic body with a (smooth) bounded open reference set $\Omega$ in $\mathbb R^3$, with the equation of motion being described by the Lamé coefficients $\lambda_0$ and $\mu_0$ and the related viscoelastic coefficients $\lambda_1$ and $\mu_1$. The latter are assumed to be factorized with the same temporal part, i.e. $\lambda_1(t,x)=k(t)p(x)$ and $\mu_1(t,x)=k(t)q(x)$. Furthermore, it is assumed that the spatial parts $p$ and $q$ of $\lambda_1$ and $\mu_1$ are unknown and the three additional measurements $\sum_{j=1}^3\sigma_{i,j}^0(t,x)$n$_j(x) = g_i(t,x)$, $i=1,2,3$, are available on $(0,T)\times \partial \Omega$ for some (sufficiently large) subset $\Gamma\subset \partial \Omega$.
    The fundamental task of this paper is to show the uniqueness of the pair $(p,q)$ as well as its continuous dependence on the boundary conditions, the initial data being kept fixed and the initial velocity being suitably related to the initial displacement.
Citation: Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems & Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Soviet Math. Dokl., 24 (1981), 244.

[3]

C. Cavaterra, A. Lorenzi and M. Yamamoto, A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation,, Comput. Appl. Math., 25 (2006), 229.

[4]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963).

[5]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptot. Anal., 32 (2002), 185.

[6]

O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409. doi: 10.1081/PDE-100106139.

[7]

O. Yu. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations,, Inverse Problems, 17 (2001), 717. doi: 10.1088/0266-5611/17/4/310.

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem,, ESAIM Control Optim. Calc. Var., 11 (2005), 1. doi: 10.1051/cocv:2004030.

[9]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the three-dimensional non-stationary Lamé system and application to an inverse problem,, Lect. Notes Pure Appl. Math., 242 (2005), 337.

[10]

V. Isakov, "Inverse Source Problems,", American Mathematical Society, (1990).

[11]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217. doi: 10.1006/jdeq.1993.1088.

[12]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249. doi: 10.1007/s00032-004-0033-6.

[13]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2005).

[14]

V. Isakov and M. Yamamoto, "Carleman Estimate with the Neumann Boundary Condition and its Applications to the Observability Inquality and Inverse Hyperbolic Problems,", Differential geometric methods in the control of partial differential equations, 268 (2000).

[15]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575. doi: 10.1088/0266-5611/8/4/009.

[16]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788.

[17]

M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,", VSP, (2004).

[18]

M. M. Lavrent'ev, V. G. Romanov and S. P. Shishat'skiĭ, "Ill-posed Problems of Mathematics Physics and Analysis,", vol. 64, 64 (1986).

[19]

A. Lorenzi, F. Messina and V. G. Romanov, Recovering a Lamé kernel in a viscoelastic system,, Applicable Analysis, 86 (2007), 1375. doi: 10.1080/00036810701675183.

[20]

J. Nečas, "Les Methodes Directes en Theorie des Equations Elliptiques,", Masson, (1967).

[21]

J. Nečas and I. Hlaváček, "Mathematical Theory Of Elastic And Elasto-Plastic Bodies: An Introduction,", Elsevier, (1981).

[22]

V. G. Romanov, Carleman estimates for second-order hyperbolic equation,, Siberian Math. J., 47 (2006), 135. doi: 10.1007/s11202-006-0014-9.

[23]

V. G. Romanov, Stability estimates in inverse problems for hyperbolic equations,, Milan J. Math., 74 (2006), 357. doi: 10.1007/s00032-006-0056-2.

[24]

V. G. Romanov and M. Yamamoto, Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement,, Appl. Anal., 89 (2010), 377. doi: 10.1080/00036810903518975.

[25]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5.

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Soviet Math. Dokl., 24 (1981), 244.

[3]

C. Cavaterra, A. Lorenzi and M. Yamamoto, A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation,, Comput. Appl. Math., 25 (2006), 229.

[4]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963).

[5]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptot. Anal., 32 (2002), 185.

[6]

O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409. doi: 10.1081/PDE-100106139.

[7]

O. Yu. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations,, Inverse Problems, 17 (2001), 717. doi: 10.1088/0266-5611/17/4/310.

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem,, ESAIM Control Optim. Calc. Var., 11 (2005), 1. doi: 10.1051/cocv:2004030.

[9]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the three-dimensional non-stationary Lamé system and application to an inverse problem,, Lect. Notes Pure Appl. Math., 242 (2005), 337.

[10]

V. Isakov, "Inverse Source Problems,", American Mathematical Society, (1990).

[11]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217. doi: 10.1006/jdeq.1993.1088.

[12]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249. doi: 10.1007/s00032-004-0033-6.

[13]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2005).

[14]

V. Isakov and M. Yamamoto, "Carleman Estimate with the Neumann Boundary Condition and its Applications to the Observability Inquality and Inverse Hyperbolic Problems,", Differential geometric methods in the control of partial differential equations, 268 (2000).

[15]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575. doi: 10.1088/0266-5611/8/4/009.

[16]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788.

[17]

M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,", VSP, (2004).

[18]

M. M. Lavrent'ev, V. G. Romanov and S. P. Shishat'skiĭ, "Ill-posed Problems of Mathematics Physics and Analysis,", vol. 64, 64 (1986).

[19]

A. Lorenzi, F. Messina and V. G. Romanov, Recovering a Lamé kernel in a viscoelastic system,, Applicable Analysis, 86 (2007), 1375. doi: 10.1080/00036810701675183.

[20]

J. Nečas, "Les Methodes Directes en Theorie des Equations Elliptiques,", Masson, (1967).

[21]

J. Nečas and I. Hlaváček, "Mathematical Theory Of Elastic And Elasto-Plastic Bodies: An Introduction,", Elsevier, (1981).

[22]

V. G. Romanov, Carleman estimates for second-order hyperbolic equation,, Siberian Math. J., 47 (2006), 135. doi: 10.1007/s11202-006-0014-9.

[23]

V. G. Romanov, Stability estimates in inverse problems for hyperbolic equations,, Milan J. Math., 74 (2006), 357. doi: 10.1007/s00032-006-0056-2.

[24]

V. G. Romanov and M. Yamamoto, Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement,, Appl. Anal., 89 (2010), 377. doi: 10.1080/00036810903518975.

[25]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5.

[1]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[2]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[3]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[4]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[5]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[6]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[7]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[8]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[9]

Alfredo Lorenzi, Eugenio Sinestrari. Regularity and identification for an integrodifferential one-dimensional hyperbolic equation. Inverse Problems & Imaging, 2009, 3 (3) : 505-536. doi: 10.3934/ipi.2009.3.505

[10]

Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611

[11]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[12]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[13]

David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control & Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391

[14]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[15]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[16]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[17]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[18]

Luciano Pandolfi. Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-11. doi: 10.3934/dcdss.2020090

[19]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[20]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]