2011, 5(2): 511-530. doi: 10.3934/ipi.2011.5.511

Non-local regularization of inverse problems

1. 

Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France, France

2. 

GREYC, Université de Caen, 14050 Caen Cedex, France

Received  October 2009 Revised  September 2010 Published  May 2011

This article proposes a new framework to regularize imaging linear inverse problems using an adaptive non-local energy. A non-local graph is optimized to match the structures of the image to recover. This allows a better reconstruction of geometric edges and textures present in natural images. A fast algorithm computes iteratively both the solution of the regularization process and the non-local graph adapted to this solution. The graph adaptation is efficient to solve inverse problems with randomized measurements such as inpainting random pixels or compressive sensing recovery. Our non-local regularization gives state-of-the-art results for this class of inverse problems. On more challenging problems such as image super-resolution, our method gives results comparable to sparse regularization in a translation invariant wavelet frame.
Citation: Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511
References:
[1]

A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009).

[2]

J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307. doi: 10.1007/s10851-009-0149-y.

[3]

J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246. doi: 10.1137/080743883.

[4]

M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).

[5]

C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200. doi: 10.1109/83.935036.

[6]

J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1.

[7]

M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417.

[8]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490. doi: 10.1137/040616024.

[9]

A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006.

[10]

A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192. doi: 10.1109/TIP.2009.2017171.

[11]

E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[12]

A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.

[13]

T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019. doi: 10.1137/S0036139900368844.

[14]

P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).

[15]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426. doi: 10.1073/pnas.0500334102.

[16]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168. doi: 10.1137/050626090.

[17]

A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200. doi: 10.1109/TIP.2004.833105.

[18]

D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103. doi: 10.1007/s11045-007-0018-z.

[19]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413. doi: 10.1002/cpa.20042.

[20]

D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289. doi: 10.1109/TIT.2006.871582.

[21]

D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425. doi: 10.1093/biomet/81.3.425.

[22]

D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006).

[23]

M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117.

[24]

A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033).

[25]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736. doi: 10.1109/TIP.2006.881969.

[26]

M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340. doi: 10.1016/j.acha.2005.03.005.

[27]

A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047. doi: 10.1109/TIP.2008.924284.

[28]

G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264).

[29]

M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64. doi: 10.1093/comjnl/bxm055.

[30]

S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47. doi: 10.1002/ima.20007.

[31]

W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56. doi: 10.1109/38.988747.

[32]

G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06.

[33]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595. doi: 10.1137/060669358.

[34]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.

[35]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091. doi: 10.1137/050622249.

[36]

M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839. doi: 10.1109/LSP.2005.859509.

[37]

J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53. doi: 10.1109/TIP.2007.911828.

[38]

F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.

[39]

S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).

[40]

S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68. doi: 10.1109/83.982815.

[41]

M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206. doi: 10.1016/j.patrec.2008.08.004.

[42]

Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127. doi: 10.1007/s10107-004-0552-5.

[43]

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607. doi: 10.1038/381607a0.

[44]

S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21. doi: 10.1109/MSP.2003.1203207.

[45]

G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703. doi: 10.1137/07068881X.

[46]

G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17. doi: 10.1007/s10851-008-0120-3.

[47]

G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57.

[48]

G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).

[49]

M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025. doi: 10.1002/cpa.20227.

[50]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[51]

J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457. doi: 10.1109/T-C.1969.222685.

[52]

S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45. doi: 10.1023/A:1007963824710.

[53]

A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628. doi: 10.1109/TIP.2007.894253.

[54]

A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.

[55]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839.

[56]

D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506. doi: 10.1109/TPAMI.2005.87.

[57]

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475. doi: 10.1023/A:1017501703105.

[58]

L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479.

[59]

L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).

[60]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. doi: 10.1137/090746379.

[61]

D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361.

show all references

References:
[1]

A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009).

[2]

J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307. doi: 10.1007/s10851-009-0149-y.

[3]

J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246. doi: 10.1137/080743883.

[4]

M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).

[5]

C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200. doi: 10.1109/83.935036.

[6]

J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1.

[7]

M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417.

[8]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490. doi: 10.1137/040616024.

[9]

A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006.

[10]

A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192. doi: 10.1109/TIP.2009.2017171.

[11]

E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[12]

A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.

[13]

T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019. doi: 10.1137/S0036139900368844.

[14]

P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).

[15]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426. doi: 10.1073/pnas.0500334102.

[16]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168. doi: 10.1137/050626090.

[17]

A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200. doi: 10.1109/TIP.2004.833105.

[18]

D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103. doi: 10.1007/s11045-007-0018-z.

[19]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413. doi: 10.1002/cpa.20042.

[20]

D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289. doi: 10.1109/TIT.2006.871582.

[21]

D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425. doi: 10.1093/biomet/81.3.425.

[22]

D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006).

[23]

M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117.

[24]

A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033).

[25]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736. doi: 10.1109/TIP.2006.881969.

[26]

M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340. doi: 10.1016/j.acha.2005.03.005.

[27]

A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047. doi: 10.1109/TIP.2008.924284.

[28]

G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264).

[29]

M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64. doi: 10.1093/comjnl/bxm055.

[30]

S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47. doi: 10.1002/ima.20007.

[31]

W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56. doi: 10.1109/38.988747.

[32]

G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06.

[33]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595. doi: 10.1137/060669358.

[34]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.

[35]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091. doi: 10.1137/050622249.

[36]

M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839. doi: 10.1109/LSP.2005.859509.

[37]

J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53. doi: 10.1109/TIP.2007.911828.

[38]

F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.

[39]

S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).

[40]

S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68. doi: 10.1109/83.982815.

[41]

M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206. doi: 10.1016/j.patrec.2008.08.004.

[42]

Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127. doi: 10.1007/s10107-004-0552-5.

[43]

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607. doi: 10.1038/381607a0.

[44]

S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21. doi: 10.1109/MSP.2003.1203207.

[45]

G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703. doi: 10.1137/07068881X.

[46]

G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17. doi: 10.1007/s10851-008-0120-3.

[47]

G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57.

[48]

G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).

[49]

M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025. doi: 10.1002/cpa.20227.

[50]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[51]

J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457. doi: 10.1109/T-C.1969.222685.

[52]

S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45. doi: 10.1023/A:1007963824710.

[53]

A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628. doi: 10.1109/TIP.2007.894253.

[54]

A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.

[55]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839.

[56]

D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506. doi: 10.1109/TPAMI.2005.87.

[57]

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475. doi: 10.1023/A:1017501703105.

[58]

L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479.

[59]

L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).

[60]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. doi: 10.1137/090746379.

[61]

D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361.

[1]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[2]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[3]

Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems & Imaging, 2012, 6 (2) : 201-214. doi: 10.3934/ipi.2012.6.201

[4]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[5]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[6]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[7]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[8]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[9]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

[10]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[11]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[12]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

[13]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[14]

Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic & Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843

[15]

Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335

[16]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[17]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[18]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 0 (0) : 1-17. doi: 10.3934/dcds.2018154

[19]

Sanda Cleja-Ţigoiu, Raisa Paşcan. Non-local elasto-viscoplastic models with dislocations and non-Schmid effect. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1621-1639. doi: 10.3934/dcdss.2013.6.1621

[20]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (42)

[Back to Top]