• Previous Article
    Recovery of the heat coefficient by two measurements
  • IPI Home
  • This Issue
  • Next Article
    A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries
2011, 5(4): 793-813. doi: 10.3934/ipi.2011.5.793

Uniqueness in inverse transmission scattering problems for multilayered obstacles

1. 

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Germany

Received  November 2010 Revised  March 2011 Published  November 2011

Assume a time-harmonic electromagnetic wave is scattered by an infinitely long cylindrical conductor surrounded by an unknown piecewise homogenous medium remaining invariant along the cylinder axis. We prove that, in TM mode, the far field patterns for all incident and observation directions at a fixed frequency uniquely determine the unknown surrounding medium as well as the shape of the cylindrical conductor. A similar uniqueness result is obtained for the scattering by multilayered penetrable periodic structures in a piecewise homogeneous medium. The periodic interfaces and refractive indices can be uniquely identified from the near field data measured only above (or below) the structure for all quasi-periodic incident waves with a fixed phase-shift. The proofs are based on the singularity of the Green function to a two dimensional elliptic equation with piecewise constant leading coefficients.
Citation: Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793
References:
[1]

C. Athanasiadis, A. G. Ramm and I. G. Stratis, Inverse acoustic scattering by a layered obstacle,, In, (1998), 1.

[2]

G. Bruckner and J. Elschner, The numerical solution of an inverse periodic transmission problem,, Math. Methods Appl. Sci., 28 (2005), 757. doi: 10.1002/mma.588.

[3]

A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Math. Meth. Appl. Sci., 17 (1994), 305. doi: 10.1002/mma.1670170502.

[4]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Second edition, Applied Mathematical Sciences, 93,, Springer-Verlag, (1998).

[5]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/3/R01.

[6]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023.

[7]

V. L. Druskin, The unique solution of the inverse problem in electrical surveying and electric well-logging for piecewise-continuous conductivity,, Izvestiya Earthy Physics, 18 (1982), 51.

[8]

E. M. Stein and G. L. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1971).

[9]

J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. I. Direct problems and gradient formulas,, Math. Meth. Appl. Sci., 21 (1998), 1297. doi: 10.1002/(SICI)1099-1476(19980925)21:14<1297::AID-MMA997>3.0.CO;2-C.

[10]

J. Elschner and M. Yamamoto, Uniqueness results for an inverse periodic transmission problem,, Inverse Problems, 20 (2004), 1841. doi: 10.1088/0266-5611/20/6/009.

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition,, Grundlehren der Mathematischen Wissenschaften, 224 (1983).

[12]

P. Hähner, A uniqueness theorem for an inverse scattering problem in an exterior domain,, SIAM J. Math. Anal., 29 (1998), 1118. doi: 10.1137/S0036141097318614.

[13]

F. Hettlich and A. Kirsch, Schiffer's theorem in inverse scattering for periodic structures,, Inverse Problems, 13 (1997), 351. doi: 10.1088/0266-5611/13/2/010.

[14]

V. Isakov, On uniqueness in the inverse transmission scattering problem,, Comm. Part. Diff. Equat., 15 (1990), 1565.

[15]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second edition, 127 (2006).

[16]

V. Isakov, On uniqueness in the general inverse transmission problem,, Comm. Math. Phys., 280 (2008), 843. doi: 10.1007/s00220-008-0485-6.

[17]

D. Kammler, "A First Course in Fourier Analysis," Second edition,, Cambridge University Press, (2007).

[18]

A. Kirsch, Diffraction by periodic structures,, in, 422 (1993), 87.

[19]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities,, Math. Meth. Appl. Sci., 21 (1998), 619. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[20]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering,, Inverse Problems, 9 (1993), 285. doi: 10.1088/0266-5611/9/2/009.

[21]

A. Lechleiter, Imaging of periodic dielectrics,, BIT, 50 (2010), 59. doi: 10.1007/s10543-010-0255-7.

[22]

X. Liu, B. Zhang and G. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium,, Inverse Problems, 26 (2010).

[23]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium,, SIAM J. Appl. Math., 70 (2010), 3105. doi: 10.1137/090777578.

[24]

X. Liu, B. Zhang and J. Yang, The inverse electromagnetic scattering problem in a piecewise homogeneous medium,, Inverse Problems, 26 (2010).

[25]

A. Nachman, L. Päivärinta and A. Teirilä, On imaging obstacles inside inhomogeneous media,, J. Funct. Anal., 252 (2007), 490. doi: 10.1016/j.jfa.2007.06.020.

[26]

J.-C. Nédélec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equation,, SIAM J. Math. Anal., 22 (1991), 1679.

[27]

R. Potthast, "Point-Sources and Multipoles in Inverse Scattering Theory,", Chapman & Hall/CRC Research Notes in Mathematics, 427 (2001).

[28]

A. G. Ramm, "Scattering by Obstacles,", Mathematics and its Applications, 21 (1986).

[29]

A. G. Ramm, Fundamental solutions to some elliptic equations with discontinuous senior coefficients and an inequality for these solutions,, Math. Inequalities and Applic., 1 (1998), 99.

[30]

B. Strycharz, An acoustic scattering problem for periodic, inhomogeneous media,, Math. Methods Appl. Sci., 21 (1998), 969. doi: 10.1002/(SICI)1099-1476(19980710)21:10<969::AID-MMA982>3.0.CO;2-Y.

[31]

B. Strycharz, Uniqueness in the inverse transmission scattering problem for periodic media,, Math. Methods Appl. Sci., 22 (1999), 753. doi: 10.1002/(SICI)1099-1476(199906)22:9<753::AID-MMA50>3.0.CO;2-U.

[32]

F. Yaman, Location and shape reconstruction of sound-soft obstacles buried in penetrable cylinders,, Inverse Problems, 25 (2009).

[33]

G. Yan, Inverse scattering by a multilayered obstacle,, Computers and Mathematics with Applications, 48 (2004), 1801. doi: 10.1016/j.camwa.2004.09.003.

show all references

References:
[1]

C. Athanasiadis, A. G. Ramm and I. G. Stratis, Inverse acoustic scattering by a layered obstacle,, In, (1998), 1.

[2]

G. Bruckner and J. Elschner, The numerical solution of an inverse periodic transmission problem,, Math. Methods Appl. Sci., 28 (2005), 757. doi: 10.1002/mma.588.

[3]

A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Math. Meth. Appl. Sci., 17 (1994), 305. doi: 10.1002/mma.1670170502.

[4]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Second edition, Applied Mathematical Sciences, 93,, Springer-Verlag, (1998).

[5]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/3/R01.

[6]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023.

[7]

V. L. Druskin, The unique solution of the inverse problem in electrical surveying and electric well-logging for piecewise-continuous conductivity,, Izvestiya Earthy Physics, 18 (1982), 51.

[8]

E. M. Stein and G. L. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1971).

[9]

J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. I. Direct problems and gradient formulas,, Math. Meth. Appl. Sci., 21 (1998), 1297. doi: 10.1002/(SICI)1099-1476(19980925)21:14<1297::AID-MMA997>3.0.CO;2-C.

[10]

J. Elschner and M. Yamamoto, Uniqueness results for an inverse periodic transmission problem,, Inverse Problems, 20 (2004), 1841. doi: 10.1088/0266-5611/20/6/009.

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition,, Grundlehren der Mathematischen Wissenschaften, 224 (1983).

[12]

P. Hähner, A uniqueness theorem for an inverse scattering problem in an exterior domain,, SIAM J. Math. Anal., 29 (1998), 1118. doi: 10.1137/S0036141097318614.

[13]

F. Hettlich and A. Kirsch, Schiffer's theorem in inverse scattering for periodic structures,, Inverse Problems, 13 (1997), 351. doi: 10.1088/0266-5611/13/2/010.

[14]

V. Isakov, On uniqueness in the inverse transmission scattering problem,, Comm. Part. Diff. Equat., 15 (1990), 1565.

[15]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second edition, 127 (2006).

[16]

V. Isakov, On uniqueness in the general inverse transmission problem,, Comm. Math. Phys., 280 (2008), 843. doi: 10.1007/s00220-008-0485-6.

[17]

D. Kammler, "A First Course in Fourier Analysis," Second edition,, Cambridge University Press, (2007).

[18]

A. Kirsch, Diffraction by periodic structures,, in, 422 (1993), 87.

[19]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities,, Math. Meth. Appl. Sci., 21 (1998), 619. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[20]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering,, Inverse Problems, 9 (1993), 285. doi: 10.1088/0266-5611/9/2/009.

[21]

A. Lechleiter, Imaging of periodic dielectrics,, BIT, 50 (2010), 59. doi: 10.1007/s10543-010-0255-7.

[22]

X. Liu, B. Zhang and G. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium,, Inverse Problems, 26 (2010).

[23]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium,, SIAM J. Appl. Math., 70 (2010), 3105. doi: 10.1137/090777578.

[24]

X. Liu, B. Zhang and J. Yang, The inverse electromagnetic scattering problem in a piecewise homogeneous medium,, Inverse Problems, 26 (2010).

[25]

A. Nachman, L. Päivärinta and A. Teirilä, On imaging obstacles inside inhomogeneous media,, J. Funct. Anal., 252 (2007), 490. doi: 10.1016/j.jfa.2007.06.020.

[26]

J.-C. Nédélec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equation,, SIAM J. Math. Anal., 22 (1991), 1679.

[27]

R. Potthast, "Point-Sources and Multipoles in Inverse Scattering Theory,", Chapman & Hall/CRC Research Notes in Mathematics, 427 (2001).

[28]

A. G. Ramm, "Scattering by Obstacles,", Mathematics and its Applications, 21 (1986).

[29]

A. G. Ramm, Fundamental solutions to some elliptic equations with discontinuous senior coefficients and an inequality for these solutions,, Math. Inequalities and Applic., 1 (1998), 99.

[30]

B. Strycharz, An acoustic scattering problem for periodic, inhomogeneous media,, Math. Methods Appl. Sci., 21 (1998), 969. doi: 10.1002/(SICI)1099-1476(19980710)21:10<969::AID-MMA982>3.0.CO;2-Y.

[31]

B. Strycharz, Uniqueness in the inverse transmission scattering problem for periodic media,, Math. Methods Appl. Sci., 22 (1999), 753. doi: 10.1002/(SICI)1099-1476(199906)22:9<753::AID-MMA50>3.0.CO;2-U.

[32]

F. Yaman, Location and shape reconstruction of sound-soft obstacles buried in penetrable cylinders,, Inverse Problems, 25 (2009).

[33]

G. Yan, Inverse scattering by a multilayered obstacle,, Computers and Mathematics with Applications, 48 (2004), 1801. doi: 10.1016/j.camwa.2004.09.003.

[1]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[2]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[3]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[4]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[5]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[6]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[7]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[8]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[9]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[10]

Piotr Słowiński, Bernd Krauskopf, Sebastian Wieczorek. Mode structure of a semiconductor laser with feedback from two external filters. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 519-586. doi: 10.3934/dcdsb.2015.20.519

[11]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[12]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[13]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[14]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[15]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[16]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[17]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[18]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[19]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[20]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]