• Previous Article
    A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries
  • IPI Home
  • This Issue
  • Next Article
    Reconstructions from boundary measurements on admissible manifolds
2011, 5(4): 843-858. doi: 10.3934/ipi.2011.5.843

Spectral shift functions in the fixed energy inverse scattering

1. 

Department of Mathematical Analysis, Institute of Mathematics, Budapest University of Technology and Economics, H 1111 Budapest, Műegyetem rkp. 3-9., Hungary

Received  June 2011 Revised  June 2011 Published  November 2011

In this paper the notion of the Krein spectral shift function is extended to the radial Schrödinger operator with fixed energy. Then we analyze the connections between the tail of the potential and the decay rate of the fixed-energy phase shifts. Finally we extend former results on the uniqueness of the fixed-energy inverse scattering problem to a general class of potentials.
Citation: Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843
References:
[1]

, Digital Library of Mathematical Functions,, \url{http://dlmf.nist.gov/idx/}., ().

[2]

M. Abramowitz and I. Stegun, eds., "Handbook of Mathematical Functions,", Dover Publications, (1972).

[3]

V. Alfaro and T. Regge, "Potential Scattering,", North-Holland, (1965).

[4]

N. Aronszajn and W. F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part,, J. d'Analyse Math., 5 (1957), 321. doi: 10.1007/BF02937349.

[5]

A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and G. Francesco, "Higher Transcendental Functions,", Vol. II, (1953).

[6]

M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development,, St. Petersburg Math. J., 4 (1993), 833.

[7]

K. Chadan and P. C. Sabatier, "Inverse Problems in Quantum Scattering Theory,", Second edition, (1989).

[8]

W. H. J. Fuchs, A generalization of Carlson's theorem,, J. London Math. Soc., 21 (1946), 106. doi: 10.1112/jlms/s1-21.2.106.

[9]

M. Giffon G. Burdet and E. Predazzi, On the inversion problem in the $\lambda$-plane,, Nuovo Cimento (10), 36 (1965), 1337.

[10]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators,, Acta Appl. Math., 39 (1995), 315. doi: 10.1007/BF00994640.

[11]

F. Gesztesy and K. A. Makarov, The $\Xi$ operator and its relation to Krein’s spectral shift function,, J. Anal. Math., 81 (2000), 139. doi: 10.1007/BF02788988.

[12]

F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators,, Trans. Amer. Math. Soc., 348 (1996), 349. doi: 10.1090/S0002-9947-96-01525-5.

[13]

_____, The xi function,, Acta Mathematica, 176 (1996), 49. doi: 10.1007/BF02547335.

[14]

P. G. Grinevich, Rational solitons of the Veselov–Novikov equations and reflectionless two-dimensional potentials at fixed energy,, Teoret. Mat. Fiz., 69 (1986), 307.

[15]

G. M. Khenkin and R. G. Novikov, The delta-bar equation in the multidimensional inverse scattering problem,, Uspekhi Mat. Nauk, 42 (1987), 93.

[16]

M. Horváth, Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line,, Trans. Amer. Math. Soc., 358 (2006), 5161. doi: 10.1090/S0002-9947-06-03996-1.

[17]

B. Ya. Levin, "Distribution of Zeros of Entire Functions,", (in Russian), (1956).

[18]

J.-J. Loeffel, On an inverse problem in quantum scattering theory,, Ann. Inst. H. Poincaré Sect. A (N.S.), 8 (1968), 339.

[19]

A. Martin and Gy. Targonski, On the uniqueness of a potential fitting a scattering amplitude at a given energy,, Nuovo Cimento (10), 20 (1961), 1182. doi: 10.1007/BF02732527.

[20]

R. G. Newton, "Scattering Theory of Waves and Particles,", Reprint of the 1982 second edition, (1982).

[21]

R. G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential,, Commun. Math. Phys., 161 (1994), 569. doi: 10.1007/BF02101933.

[22]

_____, Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$,, (in Russian), 22 (1988), 11.

[23]

A. G. Ramm, Recovery of the potential from fixed-energy scattering data,, Inverse Problems, 4 (1988), 877. doi: 10.1088/0266-5611/4/3/020.

[24]

_____, An inverse scattering problem with part of the fixed-energy phase shifts,, Comm. Math. Phys., 207 (1999), 231.

[25]

A. G. Ramm and P. D. Stefanov, Fixed energy inverse scattering for non-compactly supported potentials,, Math. Comput. Modelling, 18 (1993), 57. doi: 10.1016/0895-7177(93)90079-E.

[26]

T. Regge, Introduction to complex orbital momenta,, Nuovo Cimento (10), 14 (1959), 951. doi: 10.1007/BF02728177.

[27]

A. Rybkin, On the trace approach to the inverse scattering problem in dimension one,, SIAM J. Math. Anal., 32 (2001), 1248. doi: 10.1137/S0036141000365620.

[28]

B. Simon, Spectral analysis of rank one perturbations and applications,, in, 8 (1995), 109.

[29]

G. N. Watson, "A Treatise on the Theory of Bessel Functions,", Cambridge University Press, (1944).

[30]

R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory,, Inverse Problems, 7 (1991), 927. doi: 10.1088/0266-5611/7/6/012.

[31]

R. Weder and D. Yafaev, On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity,, Inverse Problems, 21 (2005), 1937. doi: 10.1088/0266-5611/21/6/009.

show all references

References:
[1]

, Digital Library of Mathematical Functions,, \url{http://dlmf.nist.gov/idx/}., ().

[2]

M. Abramowitz and I. Stegun, eds., "Handbook of Mathematical Functions,", Dover Publications, (1972).

[3]

V. Alfaro and T. Regge, "Potential Scattering,", North-Holland, (1965).

[4]

N. Aronszajn and W. F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part,, J. d'Analyse Math., 5 (1957), 321. doi: 10.1007/BF02937349.

[5]

A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and G. Francesco, "Higher Transcendental Functions,", Vol. II, (1953).

[6]

M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development,, St. Petersburg Math. J., 4 (1993), 833.

[7]

K. Chadan and P. C. Sabatier, "Inverse Problems in Quantum Scattering Theory,", Second edition, (1989).

[8]

W. H. J. Fuchs, A generalization of Carlson's theorem,, J. London Math. Soc., 21 (1946), 106. doi: 10.1112/jlms/s1-21.2.106.

[9]

M. Giffon G. Burdet and E. Predazzi, On the inversion problem in the $\lambda$-plane,, Nuovo Cimento (10), 36 (1965), 1337.

[10]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators,, Acta Appl. Math., 39 (1995), 315. doi: 10.1007/BF00994640.

[11]

F. Gesztesy and K. A. Makarov, The $\Xi$ operator and its relation to Krein’s spectral shift function,, J. Anal. Math., 81 (2000), 139. doi: 10.1007/BF02788988.

[12]

F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators,, Trans. Amer. Math. Soc., 348 (1996), 349. doi: 10.1090/S0002-9947-96-01525-5.

[13]

_____, The xi function,, Acta Mathematica, 176 (1996), 49. doi: 10.1007/BF02547335.

[14]

P. G. Grinevich, Rational solitons of the Veselov–Novikov equations and reflectionless two-dimensional potentials at fixed energy,, Teoret. Mat. Fiz., 69 (1986), 307.

[15]

G. M. Khenkin and R. G. Novikov, The delta-bar equation in the multidimensional inverse scattering problem,, Uspekhi Mat. Nauk, 42 (1987), 93.

[16]

M. Horváth, Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line,, Trans. Amer. Math. Soc., 358 (2006), 5161. doi: 10.1090/S0002-9947-06-03996-1.

[17]

B. Ya. Levin, "Distribution of Zeros of Entire Functions,", (in Russian), (1956).

[18]

J.-J. Loeffel, On an inverse problem in quantum scattering theory,, Ann. Inst. H. Poincaré Sect. A (N.S.), 8 (1968), 339.

[19]

A. Martin and Gy. Targonski, On the uniqueness of a potential fitting a scattering amplitude at a given energy,, Nuovo Cimento (10), 20 (1961), 1182. doi: 10.1007/BF02732527.

[20]

R. G. Newton, "Scattering Theory of Waves and Particles,", Reprint of the 1982 second edition, (1982).

[21]

R. G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential,, Commun. Math. Phys., 161 (1994), 569. doi: 10.1007/BF02101933.

[22]

_____, Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$,, (in Russian), 22 (1988), 11.

[23]

A. G. Ramm, Recovery of the potential from fixed-energy scattering data,, Inverse Problems, 4 (1988), 877. doi: 10.1088/0266-5611/4/3/020.

[24]

_____, An inverse scattering problem with part of the fixed-energy phase shifts,, Comm. Math. Phys., 207 (1999), 231.

[25]

A. G. Ramm and P. D. Stefanov, Fixed energy inverse scattering for non-compactly supported potentials,, Math. Comput. Modelling, 18 (1993), 57. doi: 10.1016/0895-7177(93)90079-E.

[26]

T. Regge, Introduction to complex orbital momenta,, Nuovo Cimento (10), 14 (1959), 951. doi: 10.1007/BF02728177.

[27]

A. Rybkin, On the trace approach to the inverse scattering problem in dimension one,, SIAM J. Math. Anal., 32 (2001), 1248. doi: 10.1137/S0036141000365620.

[28]

B. Simon, Spectral analysis of rank one perturbations and applications,, in, 8 (1995), 109.

[29]

G. N. Watson, "A Treatise on the Theory of Bessel Functions,", Cambridge University Press, (1944).

[30]

R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory,, Inverse Problems, 7 (1991), 927. doi: 10.1088/0266-5611/7/6/012.

[31]

R. Weder and D. Yafaev, On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity,, Inverse Problems, 21 (2005), 1937. doi: 10.1088/0266-5611/21/6/009.

[1]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems & Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[2]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[3]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[4]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[5]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[6]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[7]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[8]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[9]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[10]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[11]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[12]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[13]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[16]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[17]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[18]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[19]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[20]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]