\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reconstructions from boundary measurements on admissible manifolds

Abstract / Introduction Related Papers Cited by
  • We prove that a potential $q$ can be reconstructed from the Dirichlet-to-Neumann map for the Schrödinger operator $-\Delta_g + q$ in a fixed admissible $3$-dimensional Riemannian manifold $(M,g)$. We also show that an admissible metric $g$ in a fixed conformal class can be constructed from the Dirichlet-to-Neumann map for $\Delta_g$. This is a constructive version of earlier uniqueness results by Dos Santos Ferreira et al. [10] on admissible manifolds, and extends the reconstruction procedure of Nachman [31] in Euclidean space. The main points are the derivation of a boundary integral equation characterizing the boundary values of complex geometrical optics solutions, and the development of associated layer potentials adapted to a cylindrical geometry.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 58J32.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224.doi: 10.1081/PDE-200044485.

    [2]

    K. Astala and L. PäivärintaA boundary integral equation for Calderón's inverse conductivity problem, Collect. Math., 2006, 127-139.

    [3]

    K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265.

    [4]

    T. Aubin, "Some Nonlinear Problems in Riemannian Geometry," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    [5]

    M. Belishev and Y. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. PDE, 17 (1992), 767-804.doi: 10.1080/03605309208820863.

    [6]

    A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-posed Probl., 16 (2008), 19-33.doi: 10.1515/jiip.2008.002.

    [7]

    A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro, 1980), 65-73, Soc. Brasileira de Matemática, Río de Janeiro, 1980.

    [8]

    F. Delbary, P. C. Hansen and K. Knudsen, A direct numerical reconstruction algorithm for the 3D Calderón problem, in "Proc. International Conference on Inverse Problems," 2010, Hong Kong, Journal of Physics: Conference Series, 290 (2011), 012003.doi: 10.1088/1742-6596/290/1/012003.

    [9]

    D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, preprint, 2011, arXiv:1104.0232.

    [10]

    D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.doi: 10.1007/s00222-009-0196-4.

    [11]

    L. D. Faddeev, Increasing solutions of the Schrödinger equation, Sov. Phys. Dokl., 10 (1966), 1033-1035.

    [12]

    B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108.doi: 10.1007/s12220-007-9007-6.

    [13]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    [14]

    C. Guillarmou and A. Sá Barreto, Inverse problems for Einstein manifolds, Inverse Probl. Imaging, 3 (2009), 1-15.doi: 10.3934/ipi.2009.3.1.

    [15]

    C. Guillarmou and L. Tzou, Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158 (2011), 83-120.doi: 10.1215/00127094-1276310.

    [16]

    C. Guillarmou and L. Tzou, Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., 21 (2011), 393-418.doi: 10.1007/s00039-011-0110-2.

    [17]

    G. M. Henkin and V. Michel, On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator, Geom. Funct. Anal., 17 (2007), 116-155.doi: 10.1007/s00039-006-0590-7.

    [18]

    G. M. Henkin and V. Michel, Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18 (2008), 1033-1052.doi: 10.1007/s12220-008-9035-x.

    [19]

    G. M. Khenkin and R. G. Novikov, The $\overline{\partial}$ -equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

    [20]

    G. M. Henkin and R. G. Novikov, On the reconstruction of conductivity of bordered two-dimensional surface in $\mathbbR^3$ from electrical currents measurements on its boundary, J. Geom. Anal., 21 (2011), 543-587.doi: 10.1007/s12220-010-9158-8.

    [21]

    G. Henkina and M. Santacesaria, On an inverse problem for anisotropic conductivity in the plane, Inverse Problems, 26 (2010), 095011, 18 pp.

    [22]

    G. Henkin and M. SantacesariaGel'fand-Calderón's inverse problem for anisotropic conductivities on bordered surfaces in $\mathbbR^3$, IMRN (to appear), arXiv:1006.0647.

    [23]

    A. Katchalov and Y. Kurylëv, Incomplete spectral data and the reconstruction of a Riemannian manifold, J. Inverse Ill-Posed Probl., 1 (1993), 141-153.doi: 10.1515/jiip.1993.1.2.141.

    [24]

    A. Katchalov and Y. Kurylev, Multidimensional inverse problem with incomplete boundary spectral data, Comm. PDE, 23 (1998), 55-95.doi: 10.1080/03605309808821338.

    [25]

    A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

    [26]

    C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419.doi: 10.1215/00127094-1272903.

    [27]

    M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221.

    [28]

    M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4), 34 (2001), 771-787.

    [29]

    J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112.doi: 10.1002/cpa.3160420804.

    [30]

    W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations," Cambridge University Press, Cambridge, 2000.

    [31]

    A. Nachman, Reconstructions from boundary measurements, Ann. Math. (2), 128 (1988), 531-576.doi: 10.2307/1971435.

    [32]

    A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96.doi: 10.2307/2118653.

    [33]

    A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390.doi: 10.1080/03605300903296322.

    [34]

    R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) - E u(x))\psi = 0$, Funct. Anal. Appl., 22 (1988), 263-272.doi: 10.1007/BF01077418.

    [35]

    R. G. Novikov, An effectivization of the global reconstruction in the Gel'fand-Calderón inverse problem in three dimensions, in "Imaging Microstructures," 161-184, Contemp. Math., 494, Amer. Math. Soc., Providence, RI, 2009.

    [36]

    P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.doi: 10.1215/S0012-7094-93-07014-7.

    [37]

    M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. PDE, 31 (2006), 1639-1666.doi: 10.1080/03605300500530420.

    [38]

    M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

    [39]

    V. Sharafutdinov, "Integral Geometry of Tensor Fields," Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994.

    [40]

    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.doi: 10.2307/1971291.

    [41]

    M. E. Taylor, "Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials," Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return