Citation: |
[1] |
E. Ahrens, D. Laidlaw, C. Readhead, C. Brosnan, S. Fraser and R. Jacobs, MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis, Magnetic Resonance in Medicine, 40 (1998), 119-132.doi: 10.1002/mrm.1910400117. |
[2] |
Y. Assaf and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review, Journal of Molecular Neuroscience, 34 (2008), 51-61.doi: 10.1007/s12031-007-0029-0. |
[3] |
A. Barmpoutis, B. Jian, B. Vemuri and T. Shepherd, Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI, in "Lecture Notes in Computer Science," Volume 4584, Information Processing in Medical Imaging, (2007), 308-319. |
[4] |
P. Basser and D. Jones, Diffusion-tensor MRI: Theory,experimental design and data analysis: A technical review, NMR in Biomedicine, 15 (2003), 456-467. |
[5] |
P. Basser, J. Mattiello and D. LeBihan, Estimation of the effective self-diffusion tensor from the NMR spin echo, Journal of Magnetic Resonance Series B, 103 (1994), 247-254.doi: 10.1006/jmrb.1994.1037. |
[6] |
P. Callaghan, "Principles of Nuclear Magnetic Resonance Microscopy," Oxford University Press, Oxford, 1993. |
[7] |
G. Chesi, A. Garulli, A. Tesi and A. Vicino, "Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems," Lecture Notes in Control and Information Sciences, 390, Springer-Verlag, Berlin, 2009. |
[8] |
D. Cox, J. Little and D. O'Shea, "Using Algebraic Geometry," Graduate Texts in Mathematics, 185, Springer-Verlag, New York, 1998. |
[9] |
M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Apparent diffusion coefficients from hogh angular resolution diffusion imaging: Estimation and applications, Magnetic Resonance in Medicine, 56 (2006), 395-410.doi: 10.1002/mrm.20948. |
[10] |
L. Frank, Characterization of anisotropy in high angular resolution diffusionweighted MRI, Magnetic Resonance in Medicine, 47 (2002), 1083-1099.doi: 10.1002/mrm.10156. |
[11] |
A. Ghosh, M. Descoteaux and R. Deriche, Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors, in "Lecture Notes in Computer Science," Volume 5241, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, Berlin, (2008), 858-865. |
[12] |
H. Jensen, J. Helpern, A. Ramani, H. Lu and K. Kaczynski, Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging, Magnetic Resonance in Medicine, 53 (2005), 1432-1440.doi: 10.1002/mrm.20508. |
[13] |
M. Lazar, J. Jensen, L. Xuan and J. Helpern, Estimation of the orientation distribution function from diffusional kurtosis imaging, Magnetic Resonance in Medicine, 60 (2008), 774-781.doi: 10.1002/mrm.21725. |
[14] |
C. Liu, R. Bammer, B. Acar and M. Moseley, Characterizing non-gaussian diffusion by using generalized diffusion tensors, Magnetic Resonance in Medicine, 51 (2004), 924-937.doi: 10.1002/mrm.20071. |
[15] |
C. Liu, R. Bammer and M. Moseley, Generalized diffusion tensor imaging (gdti): A method for characterizing and imaging diffusion anisotropy caused by non-gaussian diffusion, Israel Journal of Chemistry, 43 (2003), 145-154.doi: 10.1560/HB5H-6XBR-1AW1-LNX9. |
[16] |
C. Liu, S. Mang and M. Moseley, In vivo generalized diffusion tensor imaging (GDTI) using higher-order tensors (HOT), Magnetic Resonance in Medicine, 63 (2010), 243-252. |
[17] |
H. Lu, H. Jensen, A. Ramani and J. Helpern, Three-dimensional characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging, NMR in Biomedicine, 19 (2006), 236-247. |
[18] |
E. Ozarslan and T. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging, Magnetic Resonance in Medicine, 50 (2003), 955-965. |
[19] |
L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.doi: 10.1016/j.jsc.2005.05.007. |
[20] |
L. Qi, D. Han and E. Wu, Principal invariants and inherent parameters of diffusion kurtosis tensors, Journal of Mathematical Analysis and Applications, 349 (2009), 165-180.doi: 10.1016/j.jmaa.2008.08.049. |
[21] |
L. Qi, Y. Wang and E. Wu, D-eigenvalues of diffusion kurtosis tensors, Journal of Computational and Applied Mathematics, 221 (2008), 150-157.doi: 10.1016/j.cam.2007.10.012. |
[22] |
L. Qi and Y. Ye, Space tensor conic programming, Technical Report, The Hong Kong Polytechnic University, 2009. |
[23] |
L. Qi, G. Yu and E. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM Journal on Imaging Sciences, 3 (2010), 416-433.doi: 10.1137/090755138. |
[24] |
E. Sigmund, M. Lazar, J. Jensen and J. Helpern, In vivo Imaging of Kurtosis Tensor Eigenvalues in the Brain at 3 T, in "Proceeding of International Soceity of Magnetic Resonance in Medecine," International Society for Magnetic Resonance in Medicine, 2009. |
[25] |
E. Stejskal and J. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, Journal of Chemical Physics, 42 (1965), 288-292.doi: 10.1063/1.1695690. |
[26] |
J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optimization Methods and Software, 11/12 (1999), 625-653.doi: 10.1080/10556789908805766. |
[27] |
K. Toh, M. Todd and R. Tütüncü, SDPT3-a Matlab software package for semidefinite programming, version 1.3. Interior point methods, Optimization Methods and Software, 11/12 (1999), 545-581.doi: 10.1080/10556789908805762. |
[28] |
D. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, 52 (2004), 1358-1372.doi: 10.1002/mrm.20279. |