2013, 7(4): 1295-1305. doi: 10.3934/ipi.2013.7.1295

Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate

1. 

Department of Mathematics and Systems Science, National University of Defense Technology, Changsha 410073, China, China, China, China

Received  February 2012 Revised  January 2013 Published  November 2013

This paper presents a new Synthetic Aperture Radar (SAR) imaging system based on compressive sampling scheme and $l_1$ minimization. The compressive sampling scheme comprises of randomization and integration of radar echoes which slows down the analog-to-digital converters (ADC) rate significantly without an aliasing in image formation. Numerical experiments indicate that the resolution of SAR images retrieved by our method outperform that obtained by conventional methods. The results also reveal that the new SAR imaging system can still retrieve non-ambiguous images even when the data rate is $\frac{1}{10}$ of the original one. Finally, we applied the new method on raw data of RADARSAT-1 to testify its practicability.
Citation: Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295
References:
[1]

B. Le, T. Rondeau, J. Reed and C. Bostian, Analog-to-digital converters,, IEEE Signal Proc. Mag., 22 (2005), 69. doi: 10.1109/4.173093.

[2]

M. Vetterli, P. Marziliano and T. Blu, Sampling signals with finite rate of innovation,, IEEE Trans. Signal Process., 50 (2002), 1417. doi: 10.1109/TSP.2002.1003065.

[3]

I. Maravic and M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise,, IEEE Transactions on Signal Processing, 53 (2004), 2788. doi: 10.1109/TSP.2005.850321.

[4]

E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inform. Theory, 52 (2006), 489. doi: 10.1109/TIT.2005.862083.

[5]

E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Comm. on Pure and Applied Math., 59 (2006), 1207. doi: 10.1002/cpa.20124.

[6]

E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies?, IEEE Trans. on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[7]

D. Donoho, Compressed sensing,, IEEE Trans. on Information Theory, 52 (2006), 1289. doi: 10.1109/TIT.2006.871582.

[8]

T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk and Y. Massound, Implementation models for analog-to-information conversion via random sampling,, Proc.of 50th Midwest Symposium on Circuits and Systems, (2007), 325. doi: 10.1109/MWSCAS.2007.4488599.

[9]

J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. Baraniuk and Y. Massound, Theory and implementation of an analog-to-information converter using random demodulation,, Proc. of IEEE International Symposium on Circuits and Systems, (2007), 1959. doi: 10.1109/ISCAS.2007.378360.

[10]

R. Baraniuk and P. Steeghs, Compressive radar imaging,, Proc. of 2007 IEEE Radar Conference, (2007), 128. doi: 10.1109/RADAR.2007.374203.

[11]

M. Herman and T. Strohmer, Compressed sensing radar,, Proc. of IEEE International Conference on Acoustics, (2008), 1509.

[12]

M. Herman and T. Strohmer, High-resolution radar via compressed sensing,, IEEE Trans. on Signal Processing, 57 (2009), 2275. doi: 10.1109/TSP.2009.2014277.

[13]

M. Cetin, Feature-Enhanced Synthetic Aperture Radar Imaging,, College of Engineering, (2001). doi: 10.1109/83.913596.

[14]

M. Cetin and W. C. Karl, Feature-enhanced synthetic aperture radar imaging formation based on non-quadratic regularization,, IEEE Trans. Image Process, 10 (2001), 623.

[15]

S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies, Synthetic Aperture Radar raw data encoding using compressed sensing,, Proc. of Radar Conference, (2008), 1.

[16]

S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, Fast encoding of synthetic aperture radar raw data using compressed sensing,, Proc. of IEEE/SP 14th Workshop on Statistical Signal Processing, (2007), 448. doi: 10.1109/SSP.2007.4301298.

[17]

G. Rilling, M. Davies and Bernard, Compressed sensing based compression of SAR raw data,, Signal Processing with Adaptive Sparse Structured Representaition, (2009).

[18]

A. FannJiang, Compressive inverse scattering I. High frequency SIMO measurements,, , (). doi: 10.1088/0266-5611/26/3/035008.

[19]

A. FannJiang, Compressive inverse scattering II. SISO measurements with born scatterers,, , (). doi: 10.1088/0266-5611/26/3/035009.

[20]

J. H. G. Ender, On compressive sensing applied to radar,, Signal Processing, 90 (2010), 1402. doi: 10.1016/j.sigpro.2009.11.009.

[21]

L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling,, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 567.

[22]

J. Fowler, Compressive-projection principal component analysis,, IEEE Trans. Image Process., 18 (2009), 2230. doi: 10.1109/TIP.2009.2025089.

[23]

S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, Analog-to-information conversion via random demodulation,, Proc. IEEE Dallas/CAS Workshop on Design, (2006), 71. doi: 10.1109/DCAS.2006.321036.

[24]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. G. Baraniuk, Beyond nyquist: Effecient sampling of sparse bandlimited signals,, Submitted to IEEE. Trans. Inform. Theory, (2009). doi: 10.1109/TIT.2009.2034811.

[25]

J. Romgerg, Compressive sensing by random convolution,, SIAM J. Imaging Sci., 2 (2009), 1098. doi: 10.1137/08072975X.

[26]

G. E. Smith, T. Diethe, Z. Hussain, J. Shawe-Taylor and D. R. Hardoon, Compressed sampling for pulse Doppler radar,, Proc. the IEEE International Radar Conference, (2010). doi: 10.1109/RADAR.2010.5494496.

[27]

Z. Bao, M. Xing and T. Wang, Radar Imaging Technology,, Beijing, (2006).

[28]

W. G. Carrara, R. S. Goodman and R. M. Majewski, Spotlight Synthetic Aperture Radar,, Boston, (1995).

[29]

M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,, IEEE Trans. Signal Process., 54 (2006), 4311. doi: 10.1109/TSP.2006.881199.

[30]

R. Baraniuk, M. Davenport, R. DeVore and M. Wakin, A simple proof of the restricted isometry property for random matrices,, Constr. Approx., 28 (): 253. doi: 10.1007/s00365-007-9003-x.

[31]

E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions,, SIAM Journal on Scientic Computing, 31 (2008), 890. doi: 10.1137/080714488.

[32]

J. Li, and P. Stoica, An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging,, IEEE Trans. on Signal Processing, 44 (1996), 1469. doi: 10.1117/12.210835.

[33]

J. Pdendaal, E. Barnard and C. Pistorius, Two-dimensional superresolution radar imaging using the MUSIC algorithm,, IEEE Trans. Antennas Propag., 42 (1994), 1386.

[34]

Z. Bi, J. Li and Z.-S. Liu, Super resolution SAR imaging via parametric spectral estimation methods,, IEEE Trans. Aerosp. Electron. Syst., 35 (1999), 267.

[35]

H. Rauhut, Stability results for random sampling of sparse trigonometric polynomials,, IEEE Trans. on Information Theory, 54 (2008), 5661. doi: 10.1109/TIT.2008.2006382.

[36]

I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementaion,, Artech Hourse, (2005).

show all references

References:
[1]

B. Le, T. Rondeau, J. Reed and C. Bostian, Analog-to-digital converters,, IEEE Signal Proc. Mag., 22 (2005), 69. doi: 10.1109/4.173093.

[2]

M. Vetterli, P. Marziliano and T. Blu, Sampling signals with finite rate of innovation,, IEEE Trans. Signal Process., 50 (2002), 1417. doi: 10.1109/TSP.2002.1003065.

[3]

I. Maravic and M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise,, IEEE Transactions on Signal Processing, 53 (2004), 2788. doi: 10.1109/TSP.2005.850321.

[4]

E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inform. Theory, 52 (2006), 489. doi: 10.1109/TIT.2005.862083.

[5]

E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Comm. on Pure and Applied Math., 59 (2006), 1207. doi: 10.1002/cpa.20124.

[6]

E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies?, IEEE Trans. on Information Theory, 52 (2006), 5406. doi: 10.1109/TIT.2006.885507.

[7]

D. Donoho, Compressed sensing,, IEEE Trans. on Information Theory, 52 (2006), 1289. doi: 10.1109/TIT.2006.871582.

[8]

T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk and Y. Massound, Implementation models for analog-to-information conversion via random sampling,, Proc.of 50th Midwest Symposium on Circuits and Systems, (2007), 325. doi: 10.1109/MWSCAS.2007.4488599.

[9]

J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. Baraniuk and Y. Massound, Theory and implementation of an analog-to-information converter using random demodulation,, Proc. of IEEE International Symposium on Circuits and Systems, (2007), 1959. doi: 10.1109/ISCAS.2007.378360.

[10]

R. Baraniuk and P. Steeghs, Compressive radar imaging,, Proc. of 2007 IEEE Radar Conference, (2007), 128. doi: 10.1109/RADAR.2007.374203.

[11]

M. Herman and T. Strohmer, Compressed sensing radar,, Proc. of IEEE International Conference on Acoustics, (2008), 1509.

[12]

M. Herman and T. Strohmer, High-resolution radar via compressed sensing,, IEEE Trans. on Signal Processing, 57 (2009), 2275. doi: 10.1109/TSP.2009.2014277.

[13]

M. Cetin, Feature-Enhanced Synthetic Aperture Radar Imaging,, College of Engineering, (2001). doi: 10.1109/83.913596.

[14]

M. Cetin and W. C. Karl, Feature-enhanced synthetic aperture radar imaging formation based on non-quadratic regularization,, IEEE Trans. Image Process, 10 (2001), 623.

[15]

S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies, Synthetic Aperture Radar raw data encoding using compressed sensing,, Proc. of Radar Conference, (2008), 1.

[16]

S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, Fast encoding of synthetic aperture radar raw data using compressed sensing,, Proc. of IEEE/SP 14th Workshop on Statistical Signal Processing, (2007), 448. doi: 10.1109/SSP.2007.4301298.

[17]

G. Rilling, M. Davies and Bernard, Compressed sensing based compression of SAR raw data,, Signal Processing with Adaptive Sparse Structured Representaition, (2009).

[18]

A. FannJiang, Compressive inverse scattering I. High frequency SIMO measurements,, , (). doi: 10.1088/0266-5611/26/3/035008.

[19]

A. FannJiang, Compressive inverse scattering II. SISO measurements with born scatterers,, , (). doi: 10.1088/0266-5611/26/3/035009.

[20]

J. H. G. Ender, On compressive sensing applied to radar,, Signal Processing, 90 (2010), 1402. doi: 10.1016/j.sigpro.2009.11.009.

[21]

L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling,, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 567.

[22]

J. Fowler, Compressive-projection principal component analysis,, IEEE Trans. Image Process., 18 (2009), 2230. doi: 10.1109/TIP.2009.2025089.

[23]

S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, Analog-to-information conversion via random demodulation,, Proc. IEEE Dallas/CAS Workshop on Design, (2006), 71. doi: 10.1109/DCAS.2006.321036.

[24]

J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. G. Baraniuk, Beyond nyquist: Effecient sampling of sparse bandlimited signals,, Submitted to IEEE. Trans. Inform. Theory, (2009). doi: 10.1109/TIT.2009.2034811.

[25]

J. Romgerg, Compressive sensing by random convolution,, SIAM J. Imaging Sci., 2 (2009), 1098. doi: 10.1137/08072975X.

[26]

G. E. Smith, T. Diethe, Z. Hussain, J. Shawe-Taylor and D. R. Hardoon, Compressed sampling for pulse Doppler radar,, Proc. the IEEE International Radar Conference, (2010). doi: 10.1109/RADAR.2010.5494496.

[27]

Z. Bao, M. Xing and T. Wang, Radar Imaging Technology,, Beijing, (2006).

[28]

W. G. Carrara, R. S. Goodman and R. M. Majewski, Spotlight Synthetic Aperture Radar,, Boston, (1995).

[29]

M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,, IEEE Trans. Signal Process., 54 (2006), 4311. doi: 10.1109/TSP.2006.881199.

[30]

R. Baraniuk, M. Davenport, R. DeVore and M. Wakin, A simple proof of the restricted isometry property for random matrices,, Constr. Approx., 28 (): 253. doi: 10.1007/s00365-007-9003-x.

[31]

E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions,, SIAM Journal on Scientic Computing, 31 (2008), 890. doi: 10.1137/080714488.

[32]

J. Li, and P. Stoica, An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging,, IEEE Trans. on Signal Processing, 44 (1996), 1469. doi: 10.1117/12.210835.

[33]

J. Pdendaal, E. Barnard and C. Pistorius, Two-dimensional superresolution radar imaging using the MUSIC algorithm,, IEEE Trans. Antennas Propag., 42 (1994), 1386.

[34]

Z. Bi, J. Li and Z.-S. Liu, Super resolution SAR imaging via parametric spectral estimation methods,, IEEE Trans. Aerosp. Electron. Syst., 35 (1999), 267.

[35]

H. Rauhut, Stability results for random sampling of sparse trigonometric polynomials,, IEEE Trans. on Information Theory, 54 (2008), 5661. doi: 10.1109/TIT.2008.2006382.

[36]

I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementaion,, Artech Hourse, (2005).

[1]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[2]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[3]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[4]

Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011

[5]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems & Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

[6]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[7]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[8]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[9]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[10]

Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196

[11]

T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems & Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577

[12]

Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems & Imaging, 2012, 6 (2) : 201-214. doi: 10.3934/ipi.2012.6.201

[13]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[14]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[15]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[16]

Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401

[17]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[18]

Yoshikazu Giga, Jürgen Saal. $L^1$ maximal regularity for the laplacian and applications. Conference Publications, 2011, 2011 (Special) : 495-504. doi: 10.3934/proc.2011.2011.495

[19]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems & Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[20]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]