
Previous Article
Quantitative photoacoustic tomography with variable index of refraction
 IPI Home
 This Issue

Next Article
Recovering boundary shape and conductivity in electrical impedance tomography
Spherical mean transform: A PDE approach
1.  Department of Mathematics, University of Idaho, Moscow, Idaho 83844, United States 
We also discuss how the approach works for the hyperbolic and spherical spaces.
References:
[1] 
M. Agranovsky and P. Kuchment, The support theorem for the single radius spherical mean transform,, Memoirs on Differential Equations and Mathematical Physics, 52 (2011), 1. Google Scholar 
[2] 
M. Agranovsky and E. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions,, J. Funct. Anal., 139 (1996), 383. doi: 10.1006/jfan.1996.0090. Google Scholar 
[3] 
G. Beylkin, The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering,, J. Math. Phys., 24 (1983), 1399. doi: 10.1063/1.525873. Google Scholar 
[4] 
G. Beylkin, Iterated spherical means in linearized inverse problems,, in, (1983), 112. Google Scholar 
[5] 
R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations,", (Vol. II by R. Courant), (1962). Google Scholar 
[6] 
M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge,, Inverse problems, 24 (2008). doi: 10.1088/02665611/24/6/065001. Google Scholar 
[7] 
A. Cormack and E. Quinto, A Radon transform on spheres through the origin in $R^n$ and applications to the Darboux equation,, Trans. Amer. Math. Soc., 260 (1980), 575. doi: 10.2307/1998023. Google Scholar 
[8] 
C. Epstein and B. Kleiner, Spherical means in annular regions,, Comm. Pure Appl. Math., 46 (1993), 441. doi: 10.1002/cpa.3160460307. Google Scholar 
[9] 
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814. Google Scholar 
[10] 
S. Helgason, "Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions,", Pure and Applied Mathematics, 113 (1984). Google Scholar 
[11] 
F. John, "Plane Waves and Spherical Means Applied to Partial Differential Equations,", Reprint of the 1955 original, (1955). Google Scholar 
[12] 
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography,, Physics in Medicine and Biology, 53 (2008). Google Scholar 
[13] 
V. Lin and A. Pinkus, Fundamentality of ridge functions,, J. Approx. Theory, 75 (1993), 295. doi: 10.1006/jath.1993.1104. Google Scholar 
[14] 
V. Lin and A. Pinkus, Approximation of multivariate functions,, in, 4 (1994), 257. Google Scholar 
[15] 
L. {Nguyen}, Range description for a spherical mean transform on spaces of constant curvatures,, , (2011). Google Scholar 
show all references
References:
[1] 
M. Agranovsky and P. Kuchment, The support theorem for the single radius spherical mean transform,, Memoirs on Differential Equations and Mathematical Physics, 52 (2011), 1. Google Scholar 
[2] 
M. Agranovsky and E. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions,, J. Funct. Anal., 139 (1996), 383. doi: 10.1006/jfan.1996.0090. Google Scholar 
[3] 
G. Beylkin, The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering,, J. Math. Phys., 24 (1983), 1399. doi: 10.1063/1.525873. Google Scholar 
[4] 
G. Beylkin, Iterated spherical means in linearized inverse problems,, in, (1983), 112. Google Scholar 
[5] 
R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations,", (Vol. II by R. Courant), (1962). Google Scholar 
[6] 
M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge,, Inverse problems, 24 (2008). doi: 10.1088/02665611/24/6/065001. Google Scholar 
[7] 
A. Cormack and E. Quinto, A Radon transform on spheres through the origin in $R^n$ and applications to the Darboux equation,, Trans. Amer. Math. Soc., 260 (1980), 575. doi: 10.2307/1998023. Google Scholar 
[8] 
C. Epstein and B. Kleiner, Spherical means in annular regions,, Comm. Pure Appl. Math., 46 (1993), 441. doi: 10.1002/cpa.3160460307. Google Scholar 
[9] 
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814. Google Scholar 
[10] 
S. Helgason, "Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions,", Pure and Applied Mathematics, 113 (1984). Google Scholar 
[11] 
F. John, "Plane Waves and Spherical Means Applied to Partial Differential Equations,", Reprint of the 1955 original, (1955). Google Scholar 
[12] 
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography,, Physics in Medicine and Biology, 53 (2008). Google Scholar 
[13] 
V. Lin and A. Pinkus, Fundamentality of ridge functions,, J. Approx. Theory, 75 (1993), 295. doi: 10.1006/jath.1993.1104. Google Scholar 
[14] 
V. Lin and A. Pinkus, Approximation of multivariate functions,, in, 4 (1994), 257. Google Scholar 
[15] 
L. {Nguyen}, Range description for a spherical mean transform on spaces of constant curvatures,, , (2011). Google Scholar 
[1] 
Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451456. doi: 10.3934/proc.2009.2009.451 
[2] 
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373382. doi: 10.3934/ipi.2009.3.373 
[3] 
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449461. doi: 10.3934/eect.2016013 
[4] 
Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743757. doi: 10.3934/cpaa.2015.14.743 
[5] 
Torsten Görner, Ralf Hielscher, Stefan Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Inverse Problems & Imaging, 2012, 6 (4) : 645661. doi: 10.3934/ipi.2012.6.645 
[6] 
Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 10631079. doi: 10.3934/krm.2011.4.1063 
[7] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[8] 
Sebastián Ferrer, Martin Lara. Families of canonical transformations by HamiltonJacobiPoincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223241. doi: 10.3934/jgm.2010.2.223 
[9] 
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and HamiltonJacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159198. doi: 10.3934/jgm.2010.2.159 
[10] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[11] 
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 13751385. doi: 10.3934/jimo.2018099 
[12] 
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 131155. doi: 10.3934/dcds.2019006 
[13] 
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 922. doi: 10.3934/nhm.2013.8.9 
[14] 
Sergey A. Suslov. Twoequation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 165176. doi: 10.3934/dcdss.2008.1.165 
[15] 
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159169. doi: 10.3934/proc.2013.2013.159 
[16] 
Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297303. doi: 10.3934/proc.2015.0297 
[17] 
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 17891818. doi: 10.3934/dcds.2017075 
[18] 
Elias M. Guio, Ricardo Sa Earp. Existence and nonexistence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549568. doi: 10.3934/cpaa.2005.4.549 
[19] 
Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 19. doi: 10.3934/dcdss.2020087 
[20] 
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131149. doi: 10.3934/amc.2007.1.131 
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]