\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Absorption and phase retrieval with Tikhonov and joint sparsity regularizations

Abstract / Introduction Related Papers Cited by
  • The X-ray phase contrast imaging technique relies on the measurement of the Fresnel diffraction intensity patterns associated to a phase shift induced by the object. The simultaneous recovery of the phase and of the absorption is an ill-posed nonlinear inverse problem. In this work, we investigate the resolution of this problem with nonlinear Tikhonov regularization and with a joint sparsity constraint regularization. The regularization functionals are minimized with a Gauss-Newton method and with a fixed point iterative method based on a surrogate functional. The algorithms are evalutated using simulated noisy data. The joint sparsity regularization gives better reconstructions for high noise levels.
    Mathematics Subject Classification: Primary: 65J22, 65J20, 65K10; Secondary: 52A41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Bayat, L. Apostol, E. Boller, T. Brochard and F. Peyrin, In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography, Nucl. Instrum. Methods. Phys. Res., 548 (2005), 247-252.

    [2]

    M. Born and E. Wolf, "Principles of Optics," Cambridge University Press, 1997.

    [3]

    J. H.Bramble, A. Cohen and W. Dahmen, "Multiscale Problems and Methods in Numerical Simulations," Lectures given at the C.I.M.E Summer School held in Martina Franca, September 9-15, 2001, Lecture Notes in Mathematics, 1825, Springer-Verlag, Berlin, 2003.

    [4]

    E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52 (2006), 489-509.doi: 10.1109/TIT.2005.862083.

    [5]

    C. Chappard, A. Basillais, L. Benhamou, A. Bonassie, N. Bonnet, B. Brunet-Imbault and F. Peyrin, Comparison of synchrotron radiation and conventional X-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads, Med. Phys., 33 (2006), 3568-3577.

    [6]

    P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay and M. Schlenker, Phase objects in synchrotron radiation hard X-ray imaging, J. Phys. D, 29 (1996), 133-146.

    [7]

    I. Daubechies, M. Fornasier and I. Loris, Accelerated projected gradient method for linear inverse problems with sparsity constraints, J. Fourier Anal. Appl., 14 (2008), 764-792.doi: 10.1007/s00041-008-9039-8.

    [8]

    V. Davidoiu, B. Sixou, M. Langer and F. Peyrin, Nonlinear iterative phase retrieval based on Fréchet derivative, Optic Express, 23 (2011), 22809-22819.

    [9]

    G. R. Davis and S. L. Wong, X-ray microtomography of bones and teeth, Physiol. Meas., 17 (1996), 121-146.

    [10]

    M. Defrise, I. Daubechies and C. De Mol, An iterative thresholding algorithm for linear inverse problems with sparsity constraint, Commun. Pure. Appl. Math., 57 (2004), 1413-1457.doi: 10.1002/cpa.20042.

    [11]

    V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.doi: 10.1088/0266-5611/15/4/307.

    [12]

    D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582.

    [13]

    H. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8.

    [14]

    H. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems, 5 (1989), 523-540.

    [15]

    M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity constraints, SIAM J. Numer. Anal., 46 (2008), 577-613.doi: 10.1137/0606668909.

    [16]

    J. P. Guigay, M. Langer, R. Boistel and P. Cloetens, A mixed contrast transfer and transport of intensity approach for phase retrieval in the Fresnel region, Opt. Lett., 32 (2007), 1617-1629.

    [17]

    T. E. Gureyev, Composite techniques for phase retrieval in the Fresnel region, Opt. Commun., 220 (2003), 49-58.

    [18]

    T. E. Gureyev and K. A. Nugent, Phase retrieval with the transport of intensity equation: Orthogonal series solution for non uniform illumination, Opt. Commun., 13 (1996), 1670-1682.

    [19]

    B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, Constructive Approximation, 29 (2009), 369-406.doi: 10.1007/s00365-008-9027-x.

    [20]

    M. Langer, P. Cloetens and F. Peyrin, Regularization of phase retrieval with phase attenuation duality prior for 3-D holotomography, IEEE Trans. Image Process, 19 (2010), 2425-2436.doi: 10.1109/TIP.2010.2048608.

    [21]

    M. Langer, P. Cloetens, J. P. Guigay and F. Peyrin, Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography, Medical Physics, 35 (2008), 4556-4565.

    [22]

    A. Momose, T. Takeda, Y. Tai, A. Yoneyama and K. Hirano, Phase-contrast tomographic imaging using an X-ray interferometer, J. Synchrotron. Rad., 5 (1998), 309-314.

    [23]

    R. D. Nowak, S. J. Wright and M. A. T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Sig. Proc., 57 (2009), 2479-2493.doi: 10.1109/TSP.2009.2016892.

    [24]

    K. A. Nugent, Coherent mehtods in the X-rays science, Advances in Physics, 59 (2010), 1-99.

    [25]

    S. Nuzzo, F. Peyrin, P. Cloetens, J. Baruchel and G. Boivin, Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography, Med. Phys., 29 (2002), 2672-2681.

    [26]

    D. M. Paganin, "Coherent X-Ray Optics," Oxford University Press, New York, 2006.

    [27]

    R. Ramlau, Morozov's discrepancy principle for Tikhonov-regularization of nonlinear operators, J. Num. Funct. Anal. Opt., 23 (2002), 147-172.doi: 10.1081/NFA-120003676.

    [28]

    M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel and P. Spanne, A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Med. Phys., 26 (1999), 2194-2204.

    [29]

    O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, "Variational Methods in Imaging," Applied Mathematical Sciences, 167, Springer, New York, 2009.

    [30]

    G. Teschke and C. Borries, Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints, Inverse Problems, 26 (2010), 025007, 23 pp.doi: 10.1088/0266-5611/26/2/025007.

    [31]

    G. Teschke and R. Ramlau, An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image impainting, Inverse Problems, 23 (2007), 1851-1870.doi: 10.1088/0266-5611/23/5/005.

    [32]

    R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints, Numer. Math., 104 (2006), 177-203.doi: 10.1007/s00211-006-0016-3.

    [33]

    J. Tropp, Algorithm for simultaneous sparse approximation. Part II: Convex relaxation, IEEE Transactions on Signal Processing, 86 (2006), 589-602.

    [34]

    T. Weikamp, C. David, O. Bunk, J. Bruder, P. Cloetens and F. Pfeiffer, X-ray phase radiography and tomography of soft tissue using grating interferometry, Eur. J. Radiol., 68 (2008), S13-S17.

    [35]

    S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany and A. W. Stevenson, Phase contrast imaging using polychromatic X-rays, Nature, 384 (1996), 335-338.

    [36]

    E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Operators," Springer-Verlag, New York, 1990.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return