2013, 7(1): 27-46. doi: 10.3934/ipi.2013.7.27

The attenuated magnetic ray transform on surfaces

1. 

Trinity College, Cambridge, CB2 1TQ, United Kingdom

Received  June 2012 Revised  October 2012 Published  February 2013

It has been shown in [10] that on a simple, compact Riemannian 2-manifold the attenuated geodesic ray transform, with attenuation given by a connection and Higgs field, is injective on functions and 1-forms modulo the natural obstruction. Furthermore, the scattering relation determines the connection and Higgs field modulo a gauge transformation. We extend the results obtained therein to the case of magnetic geodesics. In addition, we provide an application to tensor tomography in the magnetic setting, along the lines of [11].
Citation: Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27
References:
[1]

D. V. Anosov and Ya. G. Sinai, Certain smooth ergodic systems (Russian),, Uspekhi Mat. Nauk, 22 (1967), 107.

[2]

V. I. Arnol'd, Some remarks on flows of line elements and frames,, Sov. Math. Dokl., 2 (1961), 562.

[3]

K. Burns and G. P. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281. doi: 10.1088/0951-7715/15/2/305.

[4]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535. doi: 10.1016/j.aim.2007.05.014.

[5]

M. Dunajski, "Solitons, Instantons, and Twistors,", Oxford Graduate Texts in Mathematics, 19 (2010).

[6]

P. Herreros, Scattering boundary rigidity in the presence of a magnetic field,, Comm. Anal. Geom., 20 (2012), 501.

[7]

P. Herreros and J. Vargo, Scattering rigidity for analytic riemannian manifolds with a possible magnetic field,, J. Geom. Anal., 21 (2011), 641. doi: 10.1007/s12220-010-9162-z.

[8]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds,, Topology, 19 (1980), 301. doi: 10.1016/0040-9383(80)90015-4.

[9]

R. Michel, Sur la rigidité imposée par la longeur des géodésiques,, Invent. Math., 65 (): 71. doi: 10.1007/BF01389295.

[10]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460. doi: 10.1007/s00039-012-0183-6.

[11]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces, preprint,, , ().

[12]

L. Pestov and G. Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform,, Int. Math. Res. Not., 80 (2004), 4331. doi: 10.1155/S1073792804142116.

[13]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math. (2), 161 (2005), 1093. doi: 10.4007/annals.2005.161.1093.

[14]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[15]

V. A. Sharafutdinov, "Integral Geometry of Tensor Fields,", Inverse and Ill-posed Problem Series, (1994). doi: 10.1515/9783110900095.

show all references

References:
[1]

D. V. Anosov and Ya. G. Sinai, Certain smooth ergodic systems (Russian),, Uspekhi Mat. Nauk, 22 (1967), 107.

[2]

V. I. Arnol'd, Some remarks on flows of line elements and frames,, Sov. Math. Dokl., 2 (1961), 562.

[3]

K. Burns and G. P. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281. doi: 10.1088/0951-7715/15/2/305.

[4]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535. doi: 10.1016/j.aim.2007.05.014.

[5]

M. Dunajski, "Solitons, Instantons, and Twistors,", Oxford Graduate Texts in Mathematics, 19 (2010).

[6]

P. Herreros, Scattering boundary rigidity in the presence of a magnetic field,, Comm. Anal. Geom., 20 (2012), 501.

[7]

P. Herreros and J. Vargo, Scattering rigidity for analytic riemannian manifolds with a possible magnetic field,, J. Geom. Anal., 21 (2011), 641. doi: 10.1007/s12220-010-9162-z.

[8]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds,, Topology, 19 (1980), 301. doi: 10.1016/0040-9383(80)90015-4.

[9]

R. Michel, Sur la rigidité imposée par la longeur des géodésiques,, Invent. Math., 65 (): 71. doi: 10.1007/BF01389295.

[10]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460. doi: 10.1007/s00039-012-0183-6.

[11]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces, preprint,, , ().

[12]

L. Pestov and G. Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform,, Int. Math. Res. Not., 80 (2004), 4331. doi: 10.1155/S1073792804142116.

[13]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math. (2), 161 (2005), 1093. doi: 10.4007/annals.2005.161.1093.

[14]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[15]

V. A. Sharafutdinov, "Integral Geometry of Tensor Fields,", Inverse and Ill-posed Problem Series, (1994). doi: 10.1515/9783110900095.

[1]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[2]

Alexander Balandin. The localized basis functions for scalar and vector 3D tomography and their ray transforms. Inverse Problems & Imaging, 2016, 10 (4) : 899-914. doi: 10.3934/ipi.2016026

[3]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[4]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[5]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[6]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[7]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[8]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[9]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[10]

Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79

[11]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[12]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[13]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[14]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018049

[15]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[16]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[17]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[18]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[19]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[20]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]