2013, 7(1): 291-303. doi: 10.3934/ipi.2013.7.291

A decomposition method for an interior inverse scattering problem

1. 

Department of Mathematical Sciences, Delaware State University, Dover, DE 19901, United States, United States

2. 

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States

Received  February 2012 Revised  May 2012 Published  February 2013

We consider an interior inverse scattering problem of reconstructing the shape of a cavity. The measurements are the scattered fields on a curve inside the cavity due to one point source. We employ the decomposition method to reconstruct the cavity and present some convergence results. Numerical examples are provided to show the viability of the method.
Citation: Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291
References:
[1]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023.

[2]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Second edition, 93 (1998).

[3]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/3/R01.

[4]

D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region,, SIAM J. Appl. Math., 45 (1985), 1039. doi: 10.1137/0145064.

[5]

D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. II,, SIAM J. Appl. Math., 46 (1986), 506. doi: 10.1137/0146034.

[6]

D. Colton and B. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253. doi: 10.1093/imamat/31.3.253.

[7]

M. Di Cristo and J. Sun, An inverse scattering problem for a partially coated buried obstacle,, Inverse Problems, 22 (2006), 2331. doi: 10.1088/0266-5611/22/6/025.

[8]

P. Jakubik and R. Potthast, Testing the integrity of some cavity - the Cauchy problem and the range test,, Appl. Numer. Math., 58 (2008), 899. doi: 10.1016/j.apnum.2007.04.007.

[9]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford Lecture Series in Mathematics and its Applications, 36 (2008).

[10]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering,, Inverse Problems, 9 (1993), 285.

[11]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in, (1987), 3.

[12]

A. Kirsch, R. Kress, P. Monk and A. Zinn, Two methods for solving the inverse acoustic scattering problem,, Inverse Problems, 4 (1988), 749.

[13]

R. Kress, "Uniqueness in Inverse Obstacle Scattering for Electromagnetic Waves,", Proceedings of the URSI General Assembly, (2002).

[14]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/056.

[15]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. doi: 10.1137/S1052623496303470.

[16]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,", Cambridge University Press, (2000).

[17]

P. Monk and J. Sun, Inverse scattering using finite elements and gap reciprocity,, Inverse Prob. Imaging, 1 (2007), 643. doi: 10.3934/ipi.2007.1.643.

[18]

R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering,, Inverse Problems, 10 (1994), 431.

[19]

H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035005.

[20]

H. Qin and D. Colton, The inverse scattering problem for cavities,, Applied Numerical Mathematics, 62 (2012), 699. doi: 10.1016/j.apnum.2010.10.011.

[21]

H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition,, Advances in Computational Mathematics, 36 (2012), 157. doi: 10.1007/s10444-011-9179-2.

[22]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/12/125002.

show all references

References:
[1]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023.

[2]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Second edition, 93 (1998).

[3]

D. Colton and R. Kress, Using fundamental solutions in inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/3/R01.

[4]

D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region,, SIAM J. Appl. Math., 45 (1985), 1039. doi: 10.1137/0145064.

[5]

D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. II,, SIAM J. Appl. Math., 46 (1986), 506. doi: 10.1137/0146034.

[6]

D. Colton and B. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253. doi: 10.1093/imamat/31.3.253.

[7]

M. Di Cristo and J. Sun, An inverse scattering problem for a partially coated buried obstacle,, Inverse Problems, 22 (2006), 2331. doi: 10.1088/0266-5611/22/6/025.

[8]

P. Jakubik and R. Potthast, Testing the integrity of some cavity - the Cauchy problem and the range test,, Appl. Numer. Math., 58 (2008), 899. doi: 10.1016/j.apnum.2007.04.007.

[9]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford Lecture Series in Mathematics and its Applications, 36 (2008).

[10]

A. Kirsch and R. Kress, Uniqueness in inverse obstacle scattering,, Inverse Problems, 9 (1993), 285.

[11]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in, (1987), 3.

[12]

A. Kirsch, R. Kress, P. Monk and A. Zinn, Two methods for solving the inverse acoustic scattering problem,, Inverse Problems, 4 (1988), 749.

[13]

R. Kress, "Uniqueness in Inverse Obstacle Scattering for Electromagnetic Waves,", Proceedings of the URSI General Assembly, (2002).

[14]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/056.

[15]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. doi: 10.1137/S1052623496303470.

[16]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,", Cambridge University Press, (2000).

[17]

P. Monk and J. Sun, Inverse scattering using finite elements and gap reciprocity,, Inverse Prob. Imaging, 1 (2007), 643. doi: 10.3934/ipi.2007.1.643.

[18]

R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering,, Inverse Problems, 10 (1994), 431.

[19]

H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035005.

[20]

H. Qin and D. Colton, The inverse scattering problem for cavities,, Applied Numerical Mathematics, 62 (2012), 699. doi: 10.1016/j.apnum.2010.10.011.

[21]

H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition,, Advances in Computational Mathematics, 36 (2012), 157. doi: 10.1007/s10444-011-9179-2.

[22]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/12/125002.

[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[3]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[4]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[5]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[6]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[7]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[8]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[9]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[10]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[11]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[12]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[15]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[16]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[17]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[18]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[19]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[20]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]