• Previous Article
    On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines
  • IPI Home
  • This Issue
  • Next Article
    Inverse diffusion from knowledge of power densities
2013, 7(2): 341-351. doi: 10.3934/ipi.2013.7.341

Stable determination of surface impedance on a rough obstacle by far field data

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy, Italy

2. 

Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/a - 50134 Firenze, Italy

Received  July 2012 Revised  January 2013 Published  May 2013

We treat the stability of determining the boundary impedance of an obstacle by scattering data, with a single incident field. A previous result by Sincich (SIAM J. Math. Anal. 38, (2006), 434-451) showed a log stability when the boundary of the obstacle is assumed to be $C^{1,1}$-smooth. We prove that, when the obstacle boundary is merely Lipschitz, a log-log type stability still holds.
Citation: Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems & Imaging, 2013, 7 (2) : 341-351. doi: 10.3934/ipi.2013.7.341
References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Sc. Norm. Super. Pisa - Scienze Fisiche e Matematiche - Serie IV, 29 (2000), 755.

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\alpha}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math., 50 (1997), 935. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.

[3]

G. Alessandrini and E. DiBenedetto, Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability,, Indiana Univ. Math. J., 46 (1997), 1.

[4]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308.

[5]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123004.

[6]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/12/125015.

[7]

M. Bellassoued, M. Choulli and A. Jbalia, "Stability of the Determination of the Surface Impedance of an Obstacle from the Scattering Amplitude,", 2012 Available from , (). doi: 10.1002/mma.2762.

[8]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859. doi: 10.1088/0266-5611/12/6/004.

[9]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sci. 93, 93 (1992).

[10]

D. Gilbarg and N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, (1983).

[11]

Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 79. doi: 10.1088/0266-5611/9/5/003.

[12]

D.S. Jerison and C. E. Kenig, The Neumann problem on Lipschitz domains,, Bull. Amer. Math. Soc. (N.S), 4 (1981), 203. doi: 10.1090/S0273-0979-1981-14884-9.

[13]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453. doi: 10.1088/0266-5611/20/2/010.

[14]

L. E. Payne and H. F. Weinberger, New bounds in harmonic and biharmonic problems,, J. Math. Phys., 4 (1955), 291.

[15]

L. E. Payne and H. F. Weinberger, New bounds for solutions of second order elliptic partial differential equations,, Pacific J. Math., 8 (1958), 551. doi: 10.2140/pjm.1958.8.551.

[16]

F. Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635. doi: 10.1007/BF01181459.

[17]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", PhD Thesis, (2005).

[18]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434. doi: 10.1137/050631513.

show all references

References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Sc. Norm. Super. Pisa - Scienze Fisiche e Matematiche - Serie IV, 29 (2000), 755.

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\alpha}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math., 50 (1997), 935. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.

[3]

G. Alessandrini and E. DiBenedetto, Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability,, Indiana Univ. Math. J., 46 (1997), 1.

[4]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308.

[5]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123004.

[6]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/12/125015.

[7]

M. Bellassoued, M. Choulli and A. Jbalia, "Stability of the Determination of the Surface Impedance of an Obstacle from the Scattering Amplitude,", 2012 Available from , (). doi: 10.1002/mma.2762.

[8]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859. doi: 10.1088/0266-5611/12/6/004.

[9]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sci. 93, 93 (1992).

[10]

D. Gilbarg and N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, (1983).

[11]

Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 79. doi: 10.1088/0266-5611/9/5/003.

[12]

D.S. Jerison and C. E. Kenig, The Neumann problem on Lipschitz domains,, Bull. Amer. Math. Soc. (N.S), 4 (1981), 203. doi: 10.1090/S0273-0979-1981-14884-9.

[13]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453. doi: 10.1088/0266-5611/20/2/010.

[14]

L. E. Payne and H. F. Weinberger, New bounds in harmonic and biharmonic problems,, J. Math. Phys., 4 (1955), 291.

[15]

L. E. Payne and H. F. Weinberger, New bounds for solutions of second order elliptic partial differential equations,, Pacific J. Math., 8 (1958), 551. doi: 10.2140/pjm.1958.8.551.

[16]

F. Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u = 0$ durch ein Randintegral,, Math. Z., 46 (1940), 635. doi: 10.1007/BF01181459.

[17]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", PhD Thesis, (2005).

[18]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434. doi: 10.1137/050631513.

[1]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[2]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[3]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[4]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[5]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[6]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[7]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[8]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[9]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[10]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[11]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[12]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[13]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[14]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[15]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[16]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[17]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[18]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2018, 8 (0) : 1-11. doi: 10.3934/mcrf.2019014

[19]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[20]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

[Back to Top]