May  2013, 7(2): 377-396. doi: 10.3934/ipi.2013.7.377

Near-field imaging of the surface displacement on an infinite ground plane

1. 

Department of Mathematics, Zhejiang University, Hangzhou, China

2. 

Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, United States

Received  November 2011 Revised  June 2012 Published  May 2013

This paper is concerned with the inverse diffraction problem for an unbounded obstacle which is a ground plane with some local disturbance. The data is collected in the near-field regime with a distance above the surface displacement that is smaller than the wavelength. In this regime, the evanescent modes carried by the scattered wave are significant, which makes it different from the far-field measurement. We formulate explicitly the connection between the evanescent wave modes and the high frequency components of the surface displacement, and present a new numerical scheme to reconstruct the surface displacement from the boundary measurements. By extracting the information carried by the evanescent modes effectively, it is shown that the resolution of the reconstructed image is significantly improved in the near field. Numerical examples show that images with a resolution of $\lambda/10$ are obtained.
Citation: Gang Bao, Junshan Lin. Near-field imaging of the surface displacement on an infinite ground plane. Inverse Problems & Imaging, 2013, 7 (2) : 377-396. doi: 10.3934/ipi.2013.7.377
References:
[1]

H. Ammari, G. Bao and A. W. Wood, An integral equation method for the electromagnetic scattering from cavities,, Math. Meth. Appl. Sci., 23 (2000), 1057. doi: 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6.

[2]

H. Ammari, G. Bao and A. W. Wood, Analysis of the electromagnetic scattering from a cavity,, Japan J. Indust. Appl. Math., 19 (2002), 301. doi: 10.1007/BF03167458.

[3]

H. Ammari, J. Garnier and K. Sølna, Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging,, Proc. Amer. Math. Soc., ().

[4]

M. Born and E. Wolf, "Principles of Optics,", (6th ed.), (1980). doi: 10.1017/CBO9781139644181.

[5]

P. Carney and J. Schotland, Inverse scattering for near-field microscopy,, Appl. Phys. Lett., 77 (2000), 2798. doi: 10.1063/1.1320844.

[6]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics, (1983).

[7]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Applied Mathematical Sciences, 93 (1998).

[8]

D. Courjon and C. Bainier, Near field microscopy and near field optics,, Rep. Prog. Phys., 57 (1994), 989.

[9]

G. Derveaux, G. Papanicolaou and C. Tsogka, Resolution and denoising in near-field imaging,, Inverse Problems, 22 (2006), 1437. doi: 10.1088/0266-5611/22/4/017.

[10]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Mathematics and Its Application, (1996). doi: 10.1007/978-94-009-1740-8.

[11]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1997).

[12]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems,", Applied Mathematical Sciences, 120 (1996). doi: 10.1007/978-1-4612-5338-9.

[13]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane,, Inverse Problems, 16 (2000), 1541. doi: 10.1088/0266-5611/16/5/323.

[14]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind,, Am. J. Math., 73 (1951), 615. doi: 10.2307/2372313.

[15]

L Novotny and B. Hecht, "Principles of Nano-Optics,", Cambridge University Press, (2006).

[16]

L. Rayleigh, On the theory of optical images with special reference to the optical microscope,, Phil. Mag., 5 (1896), 167.

[17]

F. Reitich and C. Turc, High-order solutions of three-dimensional roughsurface scattering problems at high-frequencies. I: The scalar case,, Waves Random and Complex Media, 15 (2005), 1. doi: 10.1080/17455030500053393.

[18]

J. Sun, P. Carney and J. Schotland, Near-field scanning optical tomography: A nondestructive method for three-dimensional nanoscale imaging,, IEEE J. Sel. Top. Quant., 12 (2006), 1072. doi: 10.1109/JSTQE.2006.879567.

[19]

A. V. Tikhonov, On the solution of incorrectly formulated problems and the regularization method,, Soviet Math. Doklady, 4 (1963), 1035.

[20]

A. Willers, The Helmholtz equation in disturbed half-spaces,, Math. Meth. Appl. Sci., 9 (1987), 312. doi: 10.1002/mma.1670090124.

[21]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces,, Math. Meth. Appl. Sci., 26 (2003), 463. doi: 10.1002/mma.361.

show all references

References:
[1]

H. Ammari, G. Bao and A. W. Wood, An integral equation method for the electromagnetic scattering from cavities,, Math. Meth. Appl. Sci., 23 (2000), 1057. doi: 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6.

[2]

H. Ammari, G. Bao and A. W. Wood, Analysis of the electromagnetic scattering from a cavity,, Japan J. Indust. Appl. Math., 19 (2002), 301. doi: 10.1007/BF03167458.

[3]

H. Ammari, J. Garnier and K. Sølna, Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging,, Proc. Amer. Math. Soc., ().

[4]

M. Born and E. Wolf, "Principles of Optics,", (6th ed.), (1980). doi: 10.1017/CBO9781139644181.

[5]

P. Carney and J. Schotland, Inverse scattering for near-field microscopy,, Appl. Phys. Lett., 77 (2000), 2798. doi: 10.1063/1.1320844.

[6]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics, (1983).

[7]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Applied Mathematical Sciences, 93 (1998).

[8]

D. Courjon and C. Bainier, Near field microscopy and near field optics,, Rep. Prog. Phys., 57 (1994), 989.

[9]

G. Derveaux, G. Papanicolaou and C. Tsogka, Resolution and denoising in near-field imaging,, Inverse Problems, 22 (2006), 1437. doi: 10.1088/0266-5611/22/4/017.

[10]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Mathematics and Its Application, (1996). doi: 10.1007/978-94-009-1740-8.

[11]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1997).

[12]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems,", Applied Mathematical Sciences, 120 (1996). doi: 10.1007/978-1-4612-5338-9.

[13]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane,, Inverse Problems, 16 (2000), 1541. doi: 10.1088/0266-5611/16/5/323.

[14]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind,, Am. J. Math., 73 (1951), 615. doi: 10.2307/2372313.

[15]

L Novotny and B. Hecht, "Principles of Nano-Optics,", Cambridge University Press, (2006).

[16]

L. Rayleigh, On the theory of optical images with special reference to the optical microscope,, Phil. Mag., 5 (1896), 167.

[17]

F. Reitich and C. Turc, High-order solutions of three-dimensional roughsurface scattering problems at high-frequencies. I: The scalar case,, Waves Random and Complex Media, 15 (2005), 1. doi: 10.1080/17455030500053393.

[18]

J. Sun, P. Carney and J. Schotland, Near-field scanning optical tomography: A nondestructive method for three-dimensional nanoscale imaging,, IEEE J. Sel. Top. Quant., 12 (2006), 1072. doi: 10.1109/JSTQE.2006.879567.

[19]

A. V. Tikhonov, On the solution of incorrectly formulated problems and the regularization method,, Soviet Math. Doklady, 4 (1963), 1035.

[20]

A. Willers, The Helmholtz equation in disturbed half-spaces,, Math. Meth. Appl. Sci., 9 (1987), 312. doi: 10.1002/mma.1670090124.

[21]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces,, Math. Meth. Appl. Sci., 26 (2003), 463. doi: 10.1002/mma.361.

[1]

Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems & Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189

[2]

Ming Li, Ruming Zhang. Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Problems & Imaging, 2017, 11 (6) : 1091-1105. doi: 10.3934/ipi.2017050

[3]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[4]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[5]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[6]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[7]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[8]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[9]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[10]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

[11]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[12]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[13]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[14]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[15]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[16]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[17]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[18]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[19]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[20]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]