May  2013, 7(2): 417-443. doi: 10.3934/ipi.2013.7.417

Study of noise effects in electrical impedance tomography with resistor networks

1. 

Computational and Applied Mathematics, Rice University, MS 134, 6100 Main St. Houston, TX 77005-1892, United States

2. 

Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, United States

3. 

Institute for Computational Engineering and Sciences, University of Texas at Austin, 1 University Station C0200, Austin, TX 78712, United States

Received  December 2011 Revised  January 2013 Published  May 2013

We present a study of the numerical solution of the two dimensional electrical impedance tomography problem, with noisy measurements of the Dirichlet to Neumann map. The inversion uses parametrizations of the conductivity on optimal grids. The grids are optimal in the sense that finite volume discretizations on them give spectrally accurate approximations of the Dirichlet to Neumann map. The approximations are Dirichlet to Neumann maps of special resistor networks, that are uniquely recoverable from the measurements. Inversion on optimal grids has been proposed and analyzed recently, but the study of noise effects on the inversion has not been carried out. In this paper we present a numerical study of both the linearized and the nonlinear inverse problem. We take three different parametrizations of the unknown conductivity, with the same number of degrees of freedom. We obtain that the parametrization induced by the inversion on optimal grids is the most efficient of the three, because it gives the smallest standard deviation of the maximum a posteriori estimates of the conductivity, uniformly in the domain. For the nonlinear problem we compute the mean and variance of the maximum a posteriori estimates of the conductivity, on optimal grids. For small noise, we obtain that the estimates are unbiased and their variance is very close to the optimal one, given by the Cramér-Rao bound. For larger noise we use regularization and quantify the trade-off between reducing the variance and introducing bias in the solution. Both the full and partial measurement setups are considered.
Citation: Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Applicable Analysis, 27 (1988), 153. doi: 10.1080/00036818808839730. Google Scholar

[2]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Advances in Applied Mathematics, 35 (2005), 207. doi: 10.1016/j.aam.2004.12.002. Google Scholar

[3]

H. B. Ameur, G. Chavent and J. Jaffré, Refinement and coarsening indicators for adaptive parametrization: Application to the estimation of hydraulic transmissivities,, Inverse Problems, 18 (2002), 775. doi: 10.1088/0266-5611/18/3/317. Google Scholar

[4]

H. B. Ameur and B. Kaltenbacher, Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators,, Journal of Inverse and Ill Posed Problems, 10 (2002), 561. Google Scholar

[5]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Communications in Partial Differential Equations, 30 (2005), 207. doi: 10.1081/PDE-200044485. Google Scholar

[6]

S. Asvadurov, V. Druskin and L. Knizhnerman, Application of the difference Gaussian rules to solution of hyperbolic problems,, Journal of Computational Physics, 158 (2000), 116. doi: 10.1006/jcph.1999.6410. Google Scholar

[7]

J. A. Barcelo, T. Barcelo and A. Ruiz, Stability of the inverse conductivity problem in the plane for less regular conductivities,, Journal of Differential Equations, 173 (2001), 231. doi: 10.1006/jdeq.2000.3920. Google Scholar

[8]

L. Borcea and V. Druskin, Optimal finite difference grids for direct and inverse Sturm-Liouville problems,, Inverse Problems, 18 (2002), 979. doi: 10.1088/0266-5611/18/4/303. Google Scholar

[9]

L. Borcea, V. Druskin and F. Guevara Vasquez, Electrical impedance tomography with resistor networks,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035013. Google Scholar

[10]

L. Borcea, V. Druskin, F. Guevara Vasquez and A. V. Mamonov, Resistor network approaches to electrical impedance tomography,, Inverse Problems and Applications: Inside Out II, 60 (2012), 55. Google Scholar

[11]

L. Borcea, V. Druskin and L. Knizhnerman, On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids,, Communications on Pure and Applied Mathematics, 58 (2005), 1231. doi: 10.1002/cpa.20073. Google Scholar

[12]

L. Borcea, V. Druskin and A. V. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/4/045010. Google Scholar

[13]

L. Borcea, V. Druskin, A. V. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105009. Google Scholar

[14]

R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions,, Commun. Partial Diff. Eqns., 22 (1997), 1009. doi: 10.1080/03605309708821292. Google Scholar

[15]

E. Curtis, E. Mooers and J. A. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO - Mathematical Modelling and Numerical Analysis, 28 (1994), 781. Google Scholar

[16]

E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and resistor networks,, Linear Algebra and its Applications, 23 (1998), 115. doi: 10.1016/S0024-3795(98)10087-3. Google Scholar

[17]

E. B. Curtis and J. A. Morrow, "Inverse Problems for Electrical Networks,", World Scientific, (2000). Google Scholar

[18]

Y. C. de Verdière, Reseaux electriques planaires I,, Commentarii Mathematici Helvetici, 69 (1994), 351. doi: 10.1007/BF02564493. Google Scholar

[19]

Y. C. de Verdière, I. Gitler and D. Vertigan, Reseaux electriques planaires II,, Commentarii Mathematici Helvetici, 71 (1996), 144. doi: 10.1007/BF02566413. Google Scholar

[20]

V. Druskin and L. Knizhnerman, Gaussian spectral rules for second order finite-difference schemes,, Numerical Algorithms, 25 (2000), 139. doi: 10.1023/A:1016600805438. Google Scholar

[21]

V. Druskin and L. Knizhnerman, Gaussian spectral rules for the three-point second differences: I. A two-point positive definite problem in a semi-infinite domain,, SIAM Journal on Numerical Analysis, 37 (2000), 403. doi: 10.1137/S0036142997330792. Google Scholar

[22]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse problems, 7 (1991), 675. doi: 10.1088/0266-5611/7/5/003. Google Scholar

[23]

F. Guevara Vasquez, "On the Parametrization of Ill-posed Inverse Problems Arising from Elliptic Partial Differential Equations,", PhD thesis, (2006). Google Scholar

[24]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, Global uniqueness from partial Cauchy data in two dimensions,, Arxiv preprint , (2008). Google Scholar

[25]

D. Ingerman, Discrete and continuous Dirichlet-to-Neumann maps in the layered case,, SIAM Journal on Mathematical Analysis, 31 (2000), 1214. doi: 10.1137/S0036141097326581. Google Scholar

[26]

D. Ingerman, V. Druskin and L. Knizhnerman, Optimal finite difference grids and rational approximations of the square root I. Elliptic problems,, Communications on Pure and Applied Mathematics, 53 (2000), 1039. doi: 10.1002/1097-0312(200008)53:8<1039::AID-CPA4>3.0.CO;2-I. Google Scholar

[27]

D. Ingerman and J. A. Morrow, On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region,, SIAM Journal on Applied Mathematics, 29 (1998), 106. doi: 10.1137/S0036141096300483. Google Scholar

[28]

D. Isaacson, Distinguishability of conductivities by electric current computed tomography,, IEEE Transactions on Medical Imaging, 5 (1986), 91. doi: 10.1109/TMI.1986.4307752. Google Scholar

[29]

J. P. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer Science+ Business Media, (2005). Google Scholar

[30]

K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized d-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599. doi: 10.3934/ipi.2009.3.599. Google Scholar

[31]

H. R. MacMillan, T. A. Manteuffel and S. F. McCormick, First-order system least squares and electrical impedance tomography,, SIAM Journal on Numerical Analysis, 42 (2004), 461. doi: 10.1137/S0036142902412245. Google Scholar

[32]

A. V. Mamonov, "Resistor Networks and Optimal Grids for the Numerical Solution of Electrical Impedance Tomography with Partial Boundary Measurements,", Ph.D thesis, (2010). Google Scholar

[33]

N. Mandache, Exponential instability in an inverse problem for the Schrodinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313. Google Scholar

[34]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Annals of Mathematics, (1996), 71. doi: 10.2307/2118653. Google Scholar

[35]

Ch. Pommerenke, "Boundary Behaviour of Conformal Maps,", 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299 (1992). Google Scholar

[36]

M. J. Schervish, "Theory of Statistics,", Springer, (1995). doi: 10.1007/978-1-4612-4250-5. Google Scholar

[37]

A. D. Seagar, "Probing with Low Frequency Electric Currents,", Ph.D thesis, (1983). Google Scholar

[38]

A. G. Wills and B. Ninness, "QPC - Quadratic Programming in C,", Webpage, (). Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Applicable Analysis, 27 (1988), 153. doi: 10.1080/00036818808839730. Google Scholar

[2]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Advances in Applied Mathematics, 35 (2005), 207. doi: 10.1016/j.aam.2004.12.002. Google Scholar

[3]

H. B. Ameur, G. Chavent and J. Jaffré, Refinement and coarsening indicators for adaptive parametrization: Application to the estimation of hydraulic transmissivities,, Inverse Problems, 18 (2002), 775. doi: 10.1088/0266-5611/18/3/317. Google Scholar

[4]

H. B. Ameur and B. Kaltenbacher, Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators,, Journal of Inverse and Ill Posed Problems, 10 (2002), 561. Google Scholar

[5]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Communications in Partial Differential Equations, 30 (2005), 207. doi: 10.1081/PDE-200044485. Google Scholar

[6]

S. Asvadurov, V. Druskin and L. Knizhnerman, Application of the difference Gaussian rules to solution of hyperbolic problems,, Journal of Computational Physics, 158 (2000), 116. doi: 10.1006/jcph.1999.6410. Google Scholar

[7]

J. A. Barcelo, T. Barcelo and A. Ruiz, Stability of the inverse conductivity problem in the plane for less regular conductivities,, Journal of Differential Equations, 173 (2001), 231. doi: 10.1006/jdeq.2000.3920. Google Scholar

[8]

L. Borcea and V. Druskin, Optimal finite difference grids for direct and inverse Sturm-Liouville problems,, Inverse Problems, 18 (2002), 979. doi: 10.1088/0266-5611/18/4/303. Google Scholar

[9]

L. Borcea, V. Druskin and F. Guevara Vasquez, Electrical impedance tomography with resistor networks,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035013. Google Scholar

[10]

L. Borcea, V. Druskin, F. Guevara Vasquez and A. V. Mamonov, Resistor network approaches to electrical impedance tomography,, Inverse Problems and Applications: Inside Out II, 60 (2012), 55. Google Scholar

[11]

L. Borcea, V. Druskin and L. Knizhnerman, On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids,, Communications on Pure and Applied Mathematics, 58 (2005), 1231. doi: 10.1002/cpa.20073. Google Scholar

[12]

L. Borcea, V. Druskin and A. V. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/4/045010. Google Scholar

[13]

L. Borcea, V. Druskin, A. V. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105009. Google Scholar

[14]

R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions,, Commun. Partial Diff. Eqns., 22 (1997), 1009. doi: 10.1080/03605309708821292. Google Scholar

[15]

E. Curtis, E. Mooers and J. A. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO - Mathematical Modelling and Numerical Analysis, 28 (1994), 781. Google Scholar

[16]

E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and resistor networks,, Linear Algebra and its Applications, 23 (1998), 115. doi: 10.1016/S0024-3795(98)10087-3. Google Scholar

[17]

E. B. Curtis and J. A. Morrow, "Inverse Problems for Electrical Networks,", World Scientific, (2000). Google Scholar

[18]

Y. C. de Verdière, Reseaux electriques planaires I,, Commentarii Mathematici Helvetici, 69 (1994), 351. doi: 10.1007/BF02564493. Google Scholar

[19]

Y. C. de Verdière, I. Gitler and D. Vertigan, Reseaux electriques planaires II,, Commentarii Mathematici Helvetici, 71 (1996), 144. doi: 10.1007/BF02566413. Google Scholar

[20]

V. Druskin and L. Knizhnerman, Gaussian spectral rules for second order finite-difference schemes,, Numerical Algorithms, 25 (2000), 139. doi: 10.1023/A:1016600805438. Google Scholar

[21]

V. Druskin and L. Knizhnerman, Gaussian spectral rules for the three-point second differences: I. A two-point positive definite problem in a semi-infinite domain,, SIAM Journal on Numerical Analysis, 37 (2000), 403. doi: 10.1137/S0036142997330792. Google Scholar

[22]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse problems, 7 (1991), 675. doi: 10.1088/0266-5611/7/5/003. Google Scholar

[23]

F. Guevara Vasquez, "On the Parametrization of Ill-posed Inverse Problems Arising from Elliptic Partial Differential Equations,", PhD thesis, (2006). Google Scholar

[24]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, Global uniqueness from partial Cauchy data in two dimensions,, Arxiv preprint , (2008). Google Scholar

[25]

D. Ingerman, Discrete and continuous Dirichlet-to-Neumann maps in the layered case,, SIAM Journal on Mathematical Analysis, 31 (2000), 1214. doi: 10.1137/S0036141097326581. Google Scholar

[26]

D. Ingerman, V. Druskin and L. Knizhnerman, Optimal finite difference grids and rational approximations of the square root I. Elliptic problems,, Communications on Pure and Applied Mathematics, 53 (2000), 1039. doi: 10.1002/1097-0312(200008)53:8<1039::AID-CPA4>3.0.CO;2-I. Google Scholar

[27]

D. Ingerman and J. A. Morrow, On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region,, SIAM Journal on Applied Mathematics, 29 (1998), 106. doi: 10.1137/S0036141096300483. Google Scholar

[28]

D. Isaacson, Distinguishability of conductivities by electric current computed tomography,, IEEE Transactions on Medical Imaging, 5 (1986), 91. doi: 10.1109/TMI.1986.4307752. Google Scholar

[29]

J. P. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer Science+ Business Media, (2005). Google Scholar

[30]

K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized d-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599. doi: 10.3934/ipi.2009.3.599. Google Scholar

[31]

H. R. MacMillan, T. A. Manteuffel and S. F. McCormick, First-order system least squares and electrical impedance tomography,, SIAM Journal on Numerical Analysis, 42 (2004), 461. doi: 10.1137/S0036142902412245. Google Scholar

[32]

A. V. Mamonov, "Resistor Networks and Optimal Grids for the Numerical Solution of Electrical Impedance Tomography with Partial Boundary Measurements,", Ph.D thesis, (2010). Google Scholar

[33]

N. Mandache, Exponential instability in an inverse problem for the Schrodinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313. Google Scholar

[34]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Annals of Mathematics, (1996), 71. doi: 10.2307/2118653. Google Scholar

[35]

Ch. Pommerenke, "Boundary Behaviour of Conformal Maps,", 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299 (1992). Google Scholar

[36]

M. J. Schervish, "Theory of Statistics,", Springer, (1995). doi: 10.1007/978-1-4612-4250-5. Google Scholar

[37]

A. D. Seagar, "Probing with Low Frequency Electric Currents,", Ph.D thesis, (1983). Google Scholar

[38]

A. G. Wills and B. Ninness, "QPC - Quadratic Programming in C,", Webpage, (). Google Scholar

[1]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[2]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[3]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[4]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[5]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[6]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[7]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[8]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[9]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[10]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[11]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[12]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[13]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[14]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[15]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[16]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[17]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

[18]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[19]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

[20]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]