2013, 7(3): 757-775. doi: 10.3934/ipi.2013.7.757

A direct sampling method for inverse scattering using far-field data

1. 

Faculty of Science, South University of Science and Technology of China, Shenzhen, 518055

2. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received  June 2012 Revised  November 2012 Published  September 2013

This work is concerned with a direct sampling method (DSM) for inverse acoustic scattering problems using far-field data. Using one or few incident waves, the DSM provides quite reasonable profiles of scatterers in time-harmonic inverse acoustic scattering without a priori knowledge of either the physical properties or the number of disconnected components of the scatterer. We shall first present a novel derivation of the DSM using far-field data, then carry out a systematic evaluation of the performances and distinctions of the DSM using both near-field and far-field data. A new interpretation from the physical perspective is provided based on some numerical observations. It is shown from a variety of numerical experiments that the method has several interesting and promising potentials: a) ability to identify not only medium scatterers, but also obstacles, and even cracks, using measurement data from one or few incident directions, b) robustness with respect to large noise, and c) computational efficiency with only inner products involved.
Citation: Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757
References:
[1]

M. Abramowitz and I. A. Stegun, eds., "Handbook of Mathematical Functions,", Dover, (1965). doi: 10.1119/1.1972842.

[2]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Am. Math., 133 (2005), 1685. doi: 10.1090/S0002-9939-05-07810-X.

[3]

H. Ammari and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements,", Lecture Notes in Mathematics, (1846). doi: 10.1007/b98245.

[4]

G. Bao and P. Li, Inverse medium scattering for the Helmholtz equation at fixed frequency,, Inverse Problems, 21 (2005), 1621. doi: 10.1088/0266-5611/21/5/007.

[5]

L. Beilina and M. V. Klibanov, "Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,", Springer, (2012). doi: 10.1007/978-1-4419-7805-9.

[6]

J. Buchanan, R. Gilbert, A. Wirgin and Y. Xu, "Marine Acoustics: Direct and Inverse Scattering of Waves,", Society for Industrial and Applied Mathematics, (2004). doi: 10.1137/1.9780898717983.

[7]

F. Cakoni, D. Colton and P. Monk, "The Linear Sampling Method in Inverse Electromagnetic Scattering,", CBMS-NSF Regional Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9780898719406.

[8]

X. Chen and Y. Zhong, Music electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015008.

[9]

M. Cheney, The linear sampling method and the MUSIC algorithm,, Inverse Problems, 17 (2001), 591. doi: 10.1088/0266-5611/17/4/301.

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[11]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, (1983).

[12]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Second edition. Applied Mathematical Sciences, (1998).

[13]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA Journal of Applied Mathematics, 31 (1983), 253. doi: 10.1093/imamat/31.3.253.

[14]

A. Devaney, Super-resolution processing of multi-static data using time-reversal and music,, J. Acoust. Soc. Am., ().

[15]

J. Elschner and M. Yamamoto, Uniqueness in determining polyhedral sound-hard obstacles with a single incoming wave,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035004.

[16]

R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/8/085005.

[17]

F. K. Gruber, E. A. Marengo and A. J. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,, J. Acoust. Soc. Am., 115 (2004), 3042. doi: 10.1121/1.1738451.

[18]

M. Hanke, One shot inverse scattering via rational approximation,, SIAM J. Imaging Sciences, 5 (2012), 465. doi: 10.1137/110823985.

[19]

T. Hohage, On the numerical solution of a three-dimensional inverse medium scattering problem,, Inverse Problems, 17 (2001), 1743. doi: 10.1088/0266-5611/17/6/314.

[20]

S. Hou, K. Solna and H. Zhao, A direct imaging algorithm for extended targets,, Inverse Problems, 22 (2006), 1151. doi: 10.1088/0266-5611/22/4/003.

[21]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/2/025003.

[22]

K. Ito, B. Jin and J. Zou, A two-stage method for inverse medium scattering,, J. Comput. Phys., 237 (2013), 211. doi: 10.1016/j.jcp.2012.12.004.

[23]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009.

[24]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford Lecture Series in Mathematics and its Applications, (2008).

[25]

R. Kohn, D. Onofrei, M. Vogelius and M. Weinstein, Cloaking via change of variables for the helmholtz equation,, Comm. Pure Appl. Math., 63 (2010), 973. doi: 10.1002/cpa.20326.

[26]

J. Li, H. Liu and H. Sun, Enhanced approximate cloaking by SH and FSH lining,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/7/075011.

[27]

H. Liu and H. Sun, Enhanced near-cloak by FSH lining,, J. Math. Pures Appl. 99 (2013), 99 (2013), 17. doi: 10.1016/j.matpur.2012.06.001.

[28]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357. doi: 10.1088/0266-5611/23/6/005.

[29]

H. Liu, H. Zhang and J. Zou, Recovery of polyhedral scatterers by a single electromagnetic far-field measurement,, J. Math. Phy., 50 (2009). doi: 10.1063/1.3263140.

[30]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515. doi: 10.1088/0266-5611/22/2/008.

[31]

C. Müller, "Analysis of Spherial Symmetries in Eulidean Spaes,", Springer, (1997).

[32]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/2/R01.

[33]

R. Potthast, A study on orthogonality sampling,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074015.

[34]

R. Schmidt, Multiple emitter location and signal parameter estimation,, IEEE Trans. Antennas Propag., 34 (1986), 276. doi: 10.1109/TAP.1986.1143830.

[35]

C. G. Someda, "Electromagnetic Waves,", Boca Raton, (2006).

[36]

P. M. van den Berg, A. L. van Broekhoven and A. Abubakar, Extended contrast source inversion,, Inverse Problems, 15 (1999), 1325. doi: 10.1088/0266-5611/15/5/315.

[37]

G. N. Watson, "A Treatise on the Theory of Bessel Functions,", Cambridge University Press, (1944).

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, eds., "Handbook of Mathematical Functions,", Dover, (1965). doi: 10.1119/1.1972842.

[2]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Am. Math., 133 (2005), 1685. doi: 10.1090/S0002-9939-05-07810-X.

[3]

H. Ammari and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements,", Lecture Notes in Mathematics, (1846). doi: 10.1007/b98245.

[4]

G. Bao and P. Li, Inverse medium scattering for the Helmholtz equation at fixed frequency,, Inverse Problems, 21 (2005), 1621. doi: 10.1088/0266-5611/21/5/007.

[5]

L. Beilina and M. V. Klibanov, "Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,", Springer, (2012). doi: 10.1007/978-1-4419-7805-9.

[6]

J. Buchanan, R. Gilbert, A. Wirgin and Y. Xu, "Marine Acoustics: Direct and Inverse Scattering of Waves,", Society for Industrial and Applied Mathematics, (2004). doi: 10.1137/1.9780898717983.

[7]

F. Cakoni, D. Colton and P. Monk, "The Linear Sampling Method in Inverse Electromagnetic Scattering,", CBMS-NSF Regional Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9780898719406.

[8]

X. Chen and Y. Zhong, Music electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015008.

[9]

M. Cheney, The linear sampling method and the MUSIC algorithm,, Inverse Problems, 17 (2001), 591. doi: 10.1088/0266-5611/17/4/301.

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003.

[11]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, (1983).

[12]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Second edition. Applied Mathematical Sciences, (1998).

[13]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA Journal of Applied Mathematics, 31 (1983), 253. doi: 10.1093/imamat/31.3.253.

[14]

A. Devaney, Super-resolution processing of multi-static data using time-reversal and music,, J. Acoust. Soc. Am., ().

[15]

J. Elschner and M. Yamamoto, Uniqueness in determining polyhedral sound-hard obstacles with a single incoming wave,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035004.

[16]

R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/8/085005.

[17]

F. K. Gruber, E. A. Marengo and A. J. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,, J. Acoust. Soc. Am., 115 (2004), 3042. doi: 10.1121/1.1738451.

[18]

M. Hanke, One shot inverse scattering via rational approximation,, SIAM J. Imaging Sciences, 5 (2012), 465. doi: 10.1137/110823985.

[19]

T. Hohage, On the numerical solution of a three-dimensional inverse medium scattering problem,, Inverse Problems, 17 (2001), 1743. doi: 10.1088/0266-5611/17/6/314.

[20]

S. Hou, K. Solna and H. Zhao, A direct imaging algorithm for extended targets,, Inverse Problems, 22 (2006), 1151. doi: 10.1088/0266-5611/22/4/003.

[21]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/2/025003.

[22]

K. Ito, B. Jin and J. Zou, A two-stage method for inverse medium scattering,, J. Comput. Phys., 237 (2013), 211. doi: 10.1016/j.jcp.2012.12.004.

[23]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009.

[24]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,", Oxford Lecture Series in Mathematics and its Applications, (2008).

[25]

R. Kohn, D. Onofrei, M. Vogelius and M. Weinstein, Cloaking via change of variables for the helmholtz equation,, Comm. Pure Appl. Math., 63 (2010), 973. doi: 10.1002/cpa.20326.

[26]

J. Li, H. Liu and H. Sun, Enhanced approximate cloaking by SH and FSH lining,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/7/075011.

[27]

H. Liu and H. Sun, Enhanced near-cloak by FSH lining,, J. Math. Pures Appl. 99 (2013), 99 (2013), 17. doi: 10.1016/j.matpur.2012.06.001.

[28]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357. doi: 10.1088/0266-5611/23/6/005.

[29]

H. Liu, H. Zhang and J. Zou, Recovery of polyhedral scatterers by a single electromagnetic far-field measurement,, J. Math. Phy., 50 (2009). doi: 10.1063/1.3263140.

[30]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515. doi: 10.1088/0266-5611/22/2/008.

[31]

C. Müller, "Analysis of Spherial Symmetries in Eulidean Spaes,", Springer, (1997).

[32]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/2/R01.

[33]

R. Potthast, A study on orthogonality sampling,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074015.

[34]

R. Schmidt, Multiple emitter location and signal parameter estimation,, IEEE Trans. Antennas Propag., 34 (1986), 276. doi: 10.1109/TAP.1986.1143830.

[35]

C. G. Someda, "Electromagnetic Waves,", Boca Raton, (2006).

[36]

P. M. van den Berg, A. L. van Broekhoven and A. Abubakar, Extended contrast source inversion,, Inverse Problems, 15 (1999), 1325. doi: 10.1088/0266-5611/15/5/315.

[37]

G. N. Watson, "A Treatise on the Theory of Bessel Functions,", Cambridge University Press, (1944).

[1]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[2]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[3]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[4]

Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems & Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609

[5]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[6]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[7]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[8]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[9]

Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems & Imaging, 2013, 7 (2) : 341-351. doi: 10.3934/ipi.2013.7.341

[10]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[11]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[12]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[13]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[16]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

[17]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[18]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[19]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[20]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]