• Previous Article
    Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography
  • IPI Home
  • This Issue
  • Next Article
    Adaptive meshing approach to identification of cracks with electrical impedance tomography
2014, 8(1): 103-125. doi: 10.3934/ipi.2014.8.103

Ray transforms on a conformal class of curves

1. 

University of Toronto, Department of Mathematics, Toronto, ON, M5S 2E4, Canada

2. 

Columbia University, Department of Applied Physics and Applied Mathematics, New York, NY, 10025, United States

Received  May 2010 Revised  October 2011 Published  March 2014

We introduce a technique for recovering a sufficiently smooth function from its ray transforms over rotationally related curves in the unit disc of 2-dimensional Euclidean space. The method is based on a complexification of the underlying vector fields defining the initial transport and inversion formulae are then given in a unified form. The method is used to analyze the attenuated ray transform in the same setting.
Citation: Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103
References:
[1]

L. Ahlfors, Complex Analysis,, McGraw-Hill, (1978).

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings,, University Lecture Series, (2006).

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics,, Ann. of Math, 72 (1960), 385.

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions,, Siberian Advances in Mathematics, 8 (1998), 1.

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,, Princeton University Press, (2009).

[6]

G. Bal, Ray transforms in hyperbolic geometry,, J. Math. Pures Appl., 84 (2005), 1362. doi: 10.1016/j.matpur.2005.02.001.

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006.

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations,, World Scientific Publishing Co., (1994).

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography,, SIAM J. Appl. Math., 56 (1996), 755. doi: 10.1137/S0036139994277348.

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions,, University of Michigan Press, (1985).

[11]

L. Ehrenpreis, The Universality of the Radon Transform,, Oxford Mathematical Monographs, (2003). doi: 10.1093/acprof:oso/9780198509783.001.0001.

[12]

L. C. Evans, Partial Differential Equations,, 19 of Graduate Studies in Mathematics, (1998).

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010.

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications,, Cambridge Texts in Applied Mathematics, (2003). doi: 10.1017/CBO9780511791246.

[15]

J. B. Garnett, Bounded Analytic Functions,, Springer New York, (1981).

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable,, 40 of Graduate Studies in Mathematics, (2006).

[17]

D. Griffiths, Introduction to Elementary Particles,, Wiley-VCH, (2008). doi: 10.1002/9783527618460.

[18]

S. Helgason, The Radon Transform,, 5 of Progress in Mathematics, (1980).

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions),, American Mathematical Society, (2000).

[20]

______, The inversion of the x-ray transform on a compact symmetric space,, Journal of Lie Theory, 17 (2007), 307.

[21]

L. Hormander, Complex Analysis in Several Variables,, North Holland, (1990).

[22]

S. S. Romesh Kumar, Inner functions and substitution operators,, Acta Sci. Math. (Szegal), 58 (1993), 509.

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature,, 176 in Graduate Texts in Mathematics, (1997).

[24]

F. Natterer, Inversion of the attenuated radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, (Monographs on Mathematical Modeling and Computation), (2007). doi: 10.1118/1.1455744.

[26]

Z. Nehari, Conformal Mappings,, McGraw-Hill Book Company, (1952).

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation,, Ark. Math, 40 (2002), 145. doi: 10.1007/BF02384507.

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform,, International Math. Research Notices, 80 (2004), 4331. doi: 10.1155/S1073792804142116.

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings,, John Wiley & Sons Inc, (1988).

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields,, Princeton University Press, (2002).

[31]

B. Rubin, Notes on radon transforms in integral geometry,, Fract. Calc. Appl. Anal., 6 (2003), 25.

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[33]

D. Sarason, Complex Function Theory,, American Mathematical Society, (2007).

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields,, VSP, (1994). doi: 10.1515/9783110900095.

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, Cambridge University Press, (2003). doi: 10.1090/conm/333.

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[37]

M. E. Taylor, Partial Differential Equations,, vol. 115-117 of Applied Mathematical Sciences, (1996), 115.

show all references

References:
[1]

L. Ahlfors, Complex Analysis,, McGraw-Hill, (1978).

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings,, University Lecture Series, (2006).

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics,, Ann. of Math, 72 (1960), 385.

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions,, Siberian Advances in Mathematics, 8 (1998), 1.

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,, Princeton University Press, (2009).

[6]

G. Bal, Ray transforms in hyperbolic geometry,, J. Math. Pures Appl., 84 (2005), 1362. doi: 10.1016/j.matpur.2005.02.001.

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006.

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations,, World Scientific Publishing Co., (1994).

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography,, SIAM J. Appl. Math., 56 (1996), 755. doi: 10.1137/S0036139994277348.

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions,, University of Michigan Press, (1985).

[11]

L. Ehrenpreis, The Universality of the Radon Transform,, Oxford Mathematical Monographs, (2003). doi: 10.1093/acprof:oso/9780198509783.001.0001.

[12]

L. C. Evans, Partial Differential Equations,, 19 of Graduate Studies in Mathematics, (1998).

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010.

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications,, Cambridge Texts in Applied Mathematics, (2003). doi: 10.1017/CBO9780511791246.

[15]

J. B. Garnett, Bounded Analytic Functions,, Springer New York, (1981).

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable,, 40 of Graduate Studies in Mathematics, (2006).

[17]

D. Griffiths, Introduction to Elementary Particles,, Wiley-VCH, (2008). doi: 10.1002/9783527618460.

[18]

S. Helgason, The Radon Transform,, 5 of Progress in Mathematics, (1980).

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions),, American Mathematical Society, (2000).

[20]

______, The inversion of the x-ray transform on a compact symmetric space,, Journal of Lie Theory, 17 (2007), 307.

[21]

L. Hormander, Complex Analysis in Several Variables,, North Holland, (1990).

[22]

S. S. Romesh Kumar, Inner functions and substitution operators,, Acta Sci. Math. (Szegal), 58 (1993), 509.

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature,, 176 in Graduate Texts in Mathematics, (1997).

[24]

F. Natterer, Inversion of the attenuated radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, (Monographs on Mathematical Modeling and Computation), (2007). doi: 10.1118/1.1455744.

[26]

Z. Nehari, Conformal Mappings,, McGraw-Hill Book Company, (1952).

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation,, Ark. Math, 40 (2002), 145. doi: 10.1007/BF02384507.

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform,, International Math. Research Notices, 80 (2004), 4331. doi: 10.1155/S1073792804142116.

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings,, John Wiley & Sons Inc, (1988).

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields,, Princeton University Press, (2002).

[31]

B. Rubin, Notes on radon transforms in integral geometry,, Fract. Calc. Appl. Anal., 6 (2003), 25.

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[33]

D. Sarason, Complex Function Theory,, American Mathematical Society, (2007).

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields,, VSP, (1994). doi: 10.1515/9783110900095.

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, Cambridge University Press, (2003). doi: 10.1090/conm/333.

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[37]

M. E. Taylor, Partial Differential Equations,, vol. 115-117 of Applied Mathematical Sciences, (1996), 115.

[1]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[2]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[3]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[4]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[5]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[6]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[7]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[8]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[9]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[10]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[11]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[12]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[13]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[14]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[15]

Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641

[16]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[17]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[18]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[19]

Xumin Gu. Global wellposedness for a transport equation with super-critial dissipation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 653-665. doi: 10.3934/cpaa.2011.10.653

[20]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]