\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ray transforms on a conformal class of curves

Abstract / Introduction Related Papers Cited by
  • We introduce a technique for recovering a sufficiently smooth function from its ray transforms over rotationally related curves in the unit disc of 2-dimensional Euclidean space. The method is based on a complexification of the underlying vector fields defining the initial transport and inversion formulae are then given in a unified form. The method is used to analyze the attenuated ray transform in the same setting.
    Mathematics Subject Classification: Primary: 35R30, 35F45; Secondary: 53C65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ahlfors, Complex Analysis, McGraw-Hill, 1978.

    [2]

    L. V. Ahlfors, Lectures on Quasiconformal Mappings, University Lecture Series, American Mathematical Society, 2006.

    [3]

    L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math, 72 (1960), 385-404.

    [4]

    E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Advances in Mathematics, 8 (1998), 1-20.

    [5]

    K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, 2009.

    [6]

    G. Bal, Ray transforms in hyperbolic geometry, J. Math. Pures Appl., 84 (2005), 1362-1392.doi: 10.1016/j.matpur.2005.02.001.

    [7]

    G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.doi: 10.1088/0266-5611/20/2/006.

    [8]

    H. Begehr, Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing Co., 1994.

    [9]

    C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math., 56 (1996), 755-764.doi: 10.1137/S0036139994277348.

    [10]

    P. Colwell, Blaschke Products: Bounded Analytical Functions, University of Michigan Press, 1985.

    [11]

    L. Ehrenpreis, The Universality of the Radon Transform, Oxford Mathematical Monographs, Oxford University Press, USA, 2003.doi: 10.1093/acprof:oso/9780198509783.001.0001.

    [12]

    L. C. Evans, Partial Differential Equations, 19 of Graduate Studies in Mathematics, American Mathematical Society, 1998.

    [13]

    D. Finch, Uniqueness for the X-ray transform in the physical range, Inverse Problems, 2 (1986), 197-203.doi: 10.1088/0266-5611/2/2/010.

    [14]

    M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003.doi: 10.1017/CBO9780511791246.

    [15]

    J. B. Garnett, Bounded Analytic Functions, Springer New York, 1981.

    [16]

    R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 40 of Graduate Studies in Mathematics, American Mathematical Society, 2006.

    [17]

    D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2008.doi: 10.1002/9783527618460.

    [18]

    S. Helgason, The Radon Transform, 5 of Progress in Mathematics, Birkhäuser Boston, 1980.

    [19]

    ______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions), American Mathematical Society, 2000.

    [20]

    ______, The inversion of the x-ray transform on a compact symmetric space, Journal of Lie Theory, 17 (2007), 307-315.

    [21]

    L. Hormander, Complex Analysis in Several Variables, North Holland, 1990.

    [22]

    S. S. Romesh Kumar, Inner functions and substitution operators, Acta Sci. Math. (Szegal), 58 (1993), 509-516.

    [23]

    J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, 176 in Graduate Texts in Mathematics, Springer, 1997.

    [24]

    F. Natterer, Inversion of the attenuated radon transform, Inverse Problems, 17 (2001), 113-119.doi: 10.1088/0266-5611/17/1/309.

    [25]

    F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, (Monographs on Mathematical Modeling and Computation), Society for Industrial Mathematics, 2007.doi: 10.1118/1.1455744.

    [26]

    Z. Nehari, Conformal Mappings, McGraw-Hill Book Company, Inc., 1952.

    [27]

    R. Novikov, An inversion formula for the attenuated x-ray transformation, Ark. Math, 40 (2002), 145-167.doi: 10.1007/BF02384507.

    [28]

    L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform, International Math. Research Notices, 80 (2004), 4331-4347.doi: 10.1155/S1073792804142116.

    [29]

    H. Renelt, Elliptic Systems and Quasiconformal Mappings, John Wiley & Sons Inc, 1988.

    [30]

    V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields, Princeton University Press, 2002.

    [31]

    B. Rubin, Notes on radon transforms in integral geometry, Fract. Calc. Appl. Anal., 6 (2003), 25-72.

    [32]

    M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

    [33]

    D. Sarason, Complex Function Theory, American Mathematical Society, second ed., 2007.

    [34]

    V. Sharafudtinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994.doi: 10.1515/9783110900095.

    [35]

    G. Uhlmann, Inside Out: Inverse Problems and Applications, Cambridge University Press, 2003.doi: 10.1090/conm/333.

    [36]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

    [37]

    M. E. Taylor, Partial Differential Equations, vol. 115-117 of Applied Mathematical Sciences, Springer, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return