Citation: |
[1] |
G. Alessandrini and E. Di Benedetto, Determining 2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability, Indiana Univ. Math. J., 46 (1997), 1-82. |
[2] |
G. Alessandrini and L. Rondi, Stable determination of a crack in a planar inhomogeneous conductor, SIAM Journal on Mathematical Analysis, 30 (1998), 326-340.doi: 10.1137/S0036141097325502. |
[3] |
D. Álvarez, O. Dorn, N. Irishina and M. Moscoso, Crack reconstruction using a level-set strategy, Journal of Computational Physics, 228 (2009), 5710-5721.doi: 10.1016/j.jcp.2009.04.038. |
[4] |
K. E. Andersen, S. P. Brooks and M. B. Hansen., A Bayesian approach to crack detection in electrically conducting media, Inverse Problems, 17 (2001), 121-136.doi: 10.1088/0266-5611/17/1/310. |
[5] |
S. Andrieux, A. B. Abda and H. D. Bui., Reciprocity principle and crack identification, Inverse Problems, 15 (1999), 59-65.doi: 10.1088/0266-5611/15/1/010. |
[6] |
T. Bannour, A. B. Abda and M. Jaoua, A semi-explicit algorithm for the reconstruction of 3D planar cracks, Inverse Problems, 13 (1997), 899-917.doi: 10.1088/0266-5611/13/4/002. |
[7] |
Z. B. Bazant and J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (New Directions in Civil Engineering), CRC Press, 1997. |
[8] |
L. R. Bentley and M. Gharibi, Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site, Geophysics, 69 (2004), 674-680.doi: 10.1190/1.1759453. |
[9] |
M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements, Mathematical Modelling and Numerical Analysis, 35 (2001), 595-605.doi: 10.1051/m2an:2001128. |
[10] |
K. Bryan and M. Vogelius, Reconstruction of multiple cracks from experimental electrostatic boundary measurements, Inverse Problems and Optimal Design in Industry, 7 (1993), 147-167. |
[11] |
K. Bryan and M. S. Vogelius, A review of selected works on crack identification, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 25-46.doi: 10.1007/978-1-4684-9375-7_3. |
[12] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.doi: 10.1137/S0036144598333613. |
[13] |
K. S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. |
[14] |
P. Church, J. E. McFee, S. Gagnon and P. Wort, Electrical impedance tomographic imaging of buried landmines, IEEE Transactions on Geoscience and Remote Sensing, 44 (2006), 2407-2420.doi: 10.1109/TGRS.2006.873208. |
[15] |
W. Daily, A. Ramirez, A. Binley and D. LeBrecque, Electrical resistance tomography, The Leading Edge, 23 (2004), 438.doi: 10.1190/1.1729225. |
[16] |
J. Dardé, N. Hyvönen, A. Seppänen and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6 (2013), 176-198.doi: 10.1137/120877301. |
[17] |
A. R. Elcrat and C. Hu, Determination of surface and interior cracks from electrostatic measurements using Schwarz-Christoffel transformations, International Journal of Engineering Science, 34 (1996), 1165-1181.doi: 10.1016/0020-7225(96)00011-0. |
[18] |
I. Frerichs, G. Hahn and G. Hellige, Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure, IEEE Trans. Med. Imaging, 18 (1999), 764-773.doi: 10.1109/42.802754. |
[19] |
A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38 (1989), 527-556.doi: 10.1512/iumj.1989.38.38025. |
[20] |
F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems, 14 (1998), 67-82.doi: 10.1088/0266-5611/14/1/008. |
[21] |
T. C. Hou and J. P. Lynch, Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures, Journal of Intelligent Material Systems and Structures, (2008).doi: 10.1177/1045389X08096052. |
[22] |
N. Hyvönen, K. Karhunen and A. Seppänen, Fréchet derivative with respect to the shape of an internal electrode in Electrical Impedance Tomography, SIAM Journal on Applied Mathematics, 70 (2010), 1878.doi: 10.1137/09075929X. |
[23] |
S. Järvenpää, Finite Element Model for the Inverse Conductivity Problem, Phil. Lic. thesis, University of Helsinki, Finland, 1996. |
[24] |
J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in EIT, Inverse Problems, 16 (2000), 1487-1522.doi: 10.1088/0266-5611/16/5/321. |
[25] |
J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), 713-729.doi: 10.1088/0266-5611/15/3/306. |
[26] |
J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer Science+ Business Media, Inc., 2005. |
[27] |
K. Karhunen, A. Seppänen, A. Lehikoinen, J. Blunt, J. P. Kaipio and P. J. M. Monteiro, Electrical resistance tomography for assessment of cracks in concrete. ACI Materials Journal, 107 (2010), 523. |
[28] |
K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. M. Monteiro and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cement and Concrete Research, 40 (2010), 137-145.doi: 10.1016/j.cemconres.2009.08.023. |
[29] |
H. Kim and J. K. Seo, Unique determination of a collection of a finite number of cracks from two boundary measurements, SIAM Journal on Mathematical Analysis, 27 (1996), 1336-1340.doi: 10.1137/S0036141094275488. |
[30] |
V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen and J. P. Kaipio, Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data, Inverse Problems, 15 (1999), 1375-1391.doi: 10.1088/0266-5611/15/5/318. |
[31] |
J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2009), 015503.doi: 10.1088/0957-0233/20/1/015503. |
[32] |
P. W. A. Kunst, A. V. Noordegraaf, O. S. Hoekstra, P. E. Postmus and P. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiological Measurement, 19 (1998), 481-490.doi: 10.1088/0967-3334/19/4/003. |
[33] |
J. F. Lataste, C. Sirieix, D. Breysse and M. Frappa, Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT and E International, 36 (2003), 383-394.doi: 10.1016/S0963-8695(03)00013-6. |
[34] |
C. Lieberman, K. Willcox and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing, 32 (2010), 2523-2542.doi: 10.1137/090775622. |
[35] |
V. Liepa, F. Santosa and M. Vogelius, Crack determination from boundary measurements-reconstruction using experimental data, Journal of Nondestructive Evaluation, 12 (1993), 163-174.doi: 10.1007/BF00567084. |
[36] |
K. J. Loh, T-C Hou, J. P. Lynch and N. A Kotov, Carbon nanotube sensing skins for spatial strain and impact damage identification, Journal of Nondestructuctive Evaluation, 28 (2009), 9-25.doi: 10.1007/s10921-009-0043-y. |
[37] |
P. R. McGillivray and D. W. Oldenburg, Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: A comparative study, Geophysical Prospecting, 38 (1990), 499-524. |
[38] |
K. S. Osterman, T. E. Kerner, D. B. Williams, A. Hartov, S. P. Poplack and K. D. Paulsen, Multifrequency electrical impedance imaging: Preliminary in vivo experience in breast, Physiological Measurement, 21 (2000), 99-109. |
[39] |
R. B. Polder, Test methods for on site measurement of resistivity of concrete-a RILEM TC-154 technical recommendation, Construction and building materials, 15 (2001), 125-131.doi: 10.1016/S0950-0618(00)00061-1. |
[40] |
F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements, International Journal of Engineering Science, 29 (1991), 917-937.doi: 10.1016/0020-7225(91)90166-Z. |
[41] |
J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing and Visualization in Science, 1 (1997), 41-52. |
[42] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[43] |
O.-P. Tossavainen, V. Kolehmainen and M. Vauhkonen, Free-surface and admittivity estimation in electrical impedance tomography, International Journal for Numerical Methods in Engineering, 66 (2006), 1991-2013.doi: 10.1002/nme.1603. |
[44] |
O.-P. Tossavainen, M. Vauhkonen, L. M. Heikkinen and T. Savolainen, Estimating shapes and free surfaces with EIT, Measurement Science and Technology, 15 (2004), 1402-1411. |
[45] |
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on thecomplete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160. |
[46] |
T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory, Measurement Science and Technology, 13 (2002), 1848-1854.doi: 10.1088/0957-0233/13/12/307. |
[47] |
R. A. Williams and M. S. Beck, Process Tomography: Principles, Techniques, and Applications, Butterworth-Heinemann, 1995. |