\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography

Abstract / Introduction Related Papers Cited by
  • We study flexible and proper smoothness priors for Bayesian statistical inverse problems by using Whittle-Matérn Gaussian random fields. We review earlier results on finite-difference approximations of certain Whittle-Matérn random field in $\mathbb{R}^2$. Then we derive finite-element method approximations and show that the discrete approximations can be expressed as solutions of sparse stochastic matrix equations. Such equations are known to be computationally efficient and useful in inverse problems with a large number of unknowns.
        The presented construction of Whittle-Matérn correlation functions allows both isotropic or anisotropic priors with adjustable parameters in correlation length and variance. These parameters can be used, for example, to model spatially varying structural information of unknowns.
        As numerical examples, we apply the developed priors to two-dimensional electrical impedance tomography problems.
    Mathematics Subject Classification: Primary: 65N21; Secondary: 60J22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E: Sci. Instrum., 17 (1984), 723-733.doi: 10.1088/0022-3735/17/9/002.

    [2]

    P. Bettess, Infinite elements, International Journal for Numerical Methods in Engineering, 11 (1977), 53-64.doi: 10.1002/nme.1620110107.

    [3]

    M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.doi: 10.1137/S0036144598333613.

    [4]

    K-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.

    [5]

    I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations, Academic Press, New York-London, 1964.

    [6]

    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. With one CD-ROM (Windows, Macintosh and UNIX). Seventh edition. Elsevier/Academic Press, Amsterdam, 2007.

    [7]

    I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes I, Springer-Verlag, 2004.

    [8]

    T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems, Inverse Problems and Imaging, 3 (2009), 567-597.doi: 10.3934/ipi.2009.3.567.

    [9]

    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2013.

    [10]

    T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, With the collaboration of Robert M. Ferencz and Arthur M. Raefsky. Prentice Hall, Inc., Englewood Cliffs, NJ, 1987.

    [11]

    J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), 713-729.doi: 10.1088/0266-5611/15/3/306.

    [12]

    J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer-Verlag, 2005.

    [13]

    S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions, Inverse Problems and Imaging, 6 (2012), 215-266.doi: 10.3934/ipi.2012.6.215.

    [14]

    S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns, Inverse Problems and Imaging, 6 (2012), 267-287.doi: 10.3934/ipi.2012.6.267.

    [15]

    S. Lasanen, Discretizations of generalized random variables with applications to inverse problems, Ph.D thesis, University of Oulu, Annales Academiae Scientiarum Fennicae, Mathematica Dissertationes, 130 (2002), 64 pp.

    [16]

    M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122.doi: 10.3934/ipi.2009.3.87.

    [17]

    M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.doi: 10.1088/0266-5611/20/5/013.

    [18]

    F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498.doi: 10.1111/j.1467-9868.2011.00777.x.

    [19]

    B. Matérn, Spatial Variation. Vol. 36 of Lecture Notes in Statistics, $2^{nd}$ edition, Springer-Verlag, New York, 1986.

    [20]

    C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, The MIT Press, 2006.

    [21]

    L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors, Inverse Problems and Imaging, 5 (2011), 167-184.doi: 10.3934/ipi.2011.5.167.

    [22]

    L. Roininen, P. Piiroinen and M. Lehtinen, Constructing Continuous Stationary Covariances as Limits of the Second-Order Stochastic Difference Equations, Inverse Problems and Imaging, 7 (2013), 611-647.doi: 10.3934/ipi.2013.7.611.

    [23]

    Yu. A. Rozanov, Markov Random Fields, Springer-Verlag, 1982.

    [24]

    Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.doi: 10.1137/0907058.

    [25]

    E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.doi: 10.1137/0152060.

    [26]

    P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160.doi: 10.1109/10.784147.

    [27]

    P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Int. Statist., 40 (1963), 974-994.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(642) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return