Citation: |
[1] |
D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E: Sci. Instrum., 17 (1984), 723-733.doi: 10.1088/0022-3735/17/9/002. |
[2] |
P. Bettess, Infinite elements, International Journal for Numerical Methods in Engineering, 11 (1977), 53-64.doi: 10.1002/nme.1620110107. |
[3] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.doi: 10.1137/S0036144598333613. |
[4] |
K-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924. |
[5] |
I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations, Academic Press, New York-London, 1964. |
[6] |
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. With one CD-ROM (Windows, Macintosh and UNIX). Seventh edition. Elsevier/Academic Press, Amsterdam, 2007. |
[7] |
I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes I, Springer-Verlag, 2004. |
[8] |
T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems, Inverse Problems and Imaging, 3 (2009), 567-597.doi: 10.3934/ipi.2009.3.567. |
[9] |
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2013. |
[10] |
T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, With the collaboration of Robert M. Ferencz and Arthur M. Raefsky. Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. |
[11] |
J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), 713-729.doi: 10.1088/0266-5611/15/3/306. |
[12] |
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer-Verlag, 2005. |
[13] |
S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions, Inverse Problems and Imaging, 6 (2012), 215-266.doi: 10.3934/ipi.2012.6.215. |
[14] |
S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns, Inverse Problems and Imaging, 6 (2012), 267-287.doi: 10.3934/ipi.2012.6.267. |
[15] |
S. Lasanen, Discretizations of generalized random variables with applications to inverse problems, Ph.D thesis, University of Oulu, Annales Academiae Scientiarum Fennicae, Mathematica Dissertationes, 130 (2002), 64 pp. |
[16] |
M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122.doi: 10.3934/ipi.2009.3.87. |
[17] |
M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.doi: 10.1088/0266-5611/20/5/013. |
[18] |
F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498.doi: 10.1111/j.1467-9868.2011.00777.x. |
[19] |
B. Matérn, Spatial Variation. Vol. 36 of Lecture Notes in Statistics, $2^{nd}$ edition, Springer-Verlag, New York, 1986. |
[20] |
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, The MIT Press, 2006. |
[21] |
L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors, Inverse Problems and Imaging, 5 (2011), 167-184.doi: 10.3934/ipi.2011.5.167. |
[22] |
L. Roininen, P. Piiroinen and M. Lehtinen, Constructing Continuous Stationary Covariances as Limits of the Second-Order Stochastic Difference Equations, Inverse Problems and Imaging, 7 (2013), 611-647.doi: 10.3934/ipi.2013.7.611. |
[23] |
Yu. A. Rozanov, Markov Random Fields, Springer-Verlag, 1982. |
[24] |
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.doi: 10.1137/0907058. |
[25] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[26] |
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160.doi: 10.1109/10.784147. |
[27] |
P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Int. Statist., 40 (1963), 974-994. |