August  2014, 8(3): 811-829. doi: 10.3934/ipi.2014.8.811

Approximate marginalization of unknown scattering in quantitative photoacoustic tomography

1. 

Department of Applied Physics, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland, Finland

2. 

University of Eastern Finland, Department of Applied Physics, P.O.Box 1627, 70211 Kuopio

3. 

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142

4. 

Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, United Kingdom

5. 

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom

Received  May 2013 Revised  June 2014 Published  August 2014

Quantitative photoacoustic tomography is a hybrid imaging method, combining near-infrared optical and ultrasonic imaging. One of the interests of the method is the reconstruction of the optical absorption coefficient within the target. The measurement depends also on the uninteresting but often unknown optical scattering coefficient. In this work, we apply the approximation error method for handling uncertainty related to the unknown scattering and reconstruct the absorption only. This way the number of unknown parameters can be reduced in the inverse problem in comparison to the case of estimating all the unknown parameters. The approximation error approach is evaluated with data simulated using the diffusion approximation and Monte Carlo method. Estimates are inspected in four two-dimensional cases with biologically relevant parameter values. Estimates obtained with the approximation error approach are compared to estimates where both the absorption and scattering coefficient are reconstructed, as well to estimates where the absorption is reconstructed, but the scattering is assumed (incorrect) fixed value. The approximation error approach is found to give better estimates for absorption in comparison to estimates with the conventional measurement error model using fixed scattering. When the true scattering contains stronger variations, improvement of the approximation error method over fixed scattering assumption is more significant.
Citation: Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811
References:
[1]

Inv. Probl., 23 (2007), 2089-2102. doi: 10.1088/0266-5611/23/5/016.  Google Scholar

[2]

Inv. Probl., 23 (2007), S21-S35. doi: 10.1088/0266-5611/23/6/S03.  Google Scholar

[3]

Inverse Probl., 22 (2006), 175-195. doi: 10.1088/0266-5611/22/1/010.  Google Scholar

[4]

Inv. Probl., 26 (2010), 025011, 35pp. doi: 10.1088/0266-5611/26/2/025011.  Google Scholar

[5]

Inv. Probl., 26 (2010), 085010, 20pp. doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[6]

Inv. Probl., 27 (2011), 075003, 20pp. doi: 10.1088/0266-5611/27/7/075003.  Google Scholar

[7]

Inv. Probl., 28 (2012), 025010, 13pp. doi: 10.1088/0266-5611/28/2/025010.  Google Scholar

[8]

J. Opt. Soc. Am. A, 25 (2008), 2347-2356. Google Scholar

[9]

Interface Focus, 1 (2011), 602-631. doi: 10.1098/rsfs.2011.0028.  Google Scholar

[10]

IEEE. Trans. Biomed. Eng., 59 (2012), 1354-1363. Google Scholar

[11]

Med. Phys., 38 (2011), 1694-1704. doi: 10.1118/1.3556916.  Google Scholar

[12]

Phys. Rev. E, 75 (2007), 046706. doi: 10.1103/PhysRevE.75.046706.  Google Scholar

[13]

Addison-Wesley, Academic Press, 1967.  Google Scholar

[14]

IEEE J. Quantum Electron, 26 (1990), 2166-2185. doi: 10.1109/3.64354.  Google Scholar

[15]

Appl. Optics, 45 (2006), 1866-1875. doi: 10.1364/AO.45.001866.  Google Scholar

[16]

Inv. Probl., 23 (2007), S95-S112. doi: 10.1088/0266-5611/23/6/S08.  Google Scholar

[17]

J. Opt. Soc. Am. A, 26 (2009), 443-455. doi: 10.1364/JOSAA.26.000443.  Google Scholar

[18]

IEEE Trans. Med. Imaging, 29 (2010), 387-396. doi: 10.1109/TMI.2009.2032358.  Google Scholar

[19]

Contemp. Math., 559 (2011), 1-12. doi: 10.1090/conm/559/11067.  Google Scholar

[20]

SIAM J. Math. Anal., 35 (2004), 1213-1240. doi: 10.1137/S0036141002417814.  Google Scholar

[21]

Inv. Probl., 22 (2006), 923-938. doi: 10.1088/0266-5611/22/3/012.  Google Scholar

[22]

SIAM J. Math. Anal., 68 (2007), 392-412. doi: 10.1137/070682137.  Google Scholar

[23]

Inv. Probl., 23 (2007), S37-S49. doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[24]

UCLA CAM Report 10-42, 2010. Google Scholar

[25]

Lecture Notes in Math., 2035 (2012), 131-158. doi: 10.1007/978-3-642-22990-9_5.  Google Scholar

[26]

Math. Meth. Appl. Sci., 28 (2005), 1919-1937. doi: 10.1002/mma.648.  Google Scholar

[27]

Opt. Express, 13 (2005), 296-308. doi: 10.1364/OPEX.13.000296.  Google Scholar

[28]

J. Biomed. Opt., 17 (2012), 096012. doi: 10.1117/1.JBO.17.9.096012.  Google Scholar

[29]

Inv. Probl., 24 (2008), 055006, 25pp. doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[30]

Academic Press, 1978.  Google Scholar

[31]

Phys. Med. Biol., 51 (2006), 6437-6448. doi: 10.1088/0031-9155/51/24/010.  Google Scholar

[32]

Med. Phys., 39 (2012), 7262-7271. doi: 10.1118/1.4764911.  Google Scholar

[33]

Springer, New York, 2005.  Google Scholar

[34]

J. Comput. Appl. Math, 198 (2007), 493-504. doi: 10.1016/j.cam.2005.09.027.  Google Scholar

[35]

in Bayesian Theory and Applications (eds. P. Damien, P. Dellaportas, N. G. Polson and D. A. Stephens), Oxford University Press (2013), 544-672. Google Scholar

[36]

J. Opts. Soc. Am. A, 26 (2009), 2257-2268. doi: 10.1364/JOSAA.26.002257.  Google Scholar

[37]

Int. J. Uncertain. Quantif., 1 (2011), 1-17. doi: 10.1615/Int.J.UncertaintyQuantification.v1.i1.10.  Google Scholar

[38]

Inv. Probl., 23 (2007), 373-383. doi: 10.1088/0266-5611/23/1/021.  Google Scholar

[39]

Inv. Probl., 23 (2007), S11-S20. doi: 10.1088/0266-5611/23/6/S02.  Google Scholar

[40]

Appl. Optics, 49 (2010), 1219-1233. doi: 10.1364/AO.49.001219.  Google Scholar

[41]

Phys. Med. Biol., 54 (2009), R59-R97. doi: 10.1088/0031-9155/54/19/R01.  Google Scholar

[42]

Phys. Med. Biol., 58 (2013), 999-1011. doi: 10.1088/0031-9155/58/4/999.  Google Scholar

[43]

Communications in Mathematical Sciences, 12 (2014), 201-234. arXiv:1207.4664v1 [math.NA] doi: 10.4310/CMS.2014.v12.n2.a1.  Google Scholar

[44]

Phys. Med. Biol., 39 (1994), 177-196. doi: 10.1088/0031-9155/39/1/011.  Google Scholar

[45]

Anal. Biochem., 227 (1995), 54-68. doi: 10.1006/abio.1995.1252.  Google Scholar

[46]

Inverse Probl. Imag., 6 (2012), 315-320. doi: 10.3934/ipi.2012.6.315.  Google Scholar

[47]

Ultrasonic Imaging, 1 (1979), 210-231. doi: 10.1016/0161-7346(79)90017-8.  Google Scholar

[48]

J. Acoust. Soc. Am., 67 (1980), 1266-1273. doi: 10.1121/1.384168.  Google Scholar

[49]

IEEE. Trans. Biomed. Eng., BME-28 (1981), 202-220. doi: 10.1109/TBME.1981.324791.  Google Scholar

[50]

UCLA CAM Report 10-81 (2010). Google Scholar

[51]

Inv. Probl., 29 (2013), 075006, 19pp. doi: 10.1088/0266-5611/29/7/075006.  Google Scholar

[52]

Appl. Optics, 50 (2011), 3145-3154. doi: 10.1364/AO.50.003145.  Google Scholar

[53]

Inv. Probl., 26 (2010), 015005, 18pp. doi: 10.1088/0266-5611/26/1/015005.  Google Scholar

[54]

Inv. Probl., 28 (2012), 084009, 17pp. doi: 10.1088/0266-5611/28/8/084009.  Google Scholar

[55]

Inverse Probl., 26 (2010), 115003, 20pp. doi: 10.1088/0266-5611/26/11/115003.  Google Scholar

[56]

Phys. Med. Biol., 57 (2012), 5399-5423. doi: 10.1088/0031-9155/57/17/5399.  Google Scholar

[57]

IEEE Trans. Biomed. Eng., 50 (2003), 1086-1099. Google Scholar

[58]

Phys. Rev. E., 71 (2005), 016706. doi: 10.1103/PhysRevE.71.016706.  Google Scholar

[59]

Phys. Med. Biol., 55 (2010), 1917-1934. doi: 10.1088/0031-9155/55/7/009.  Google Scholar

[60]

Opt. Lett., 32 (2007), 2556-2558. doi: 10.1364/OL.32.002556.  Google Scholar

[61]

Med. Phys., 34 (2007), 538-546. doi: 10.1118/1.2409234.  Google Scholar

[62]

Phil. Trans. R. Soc. A, 367 (2009), 3045-3054. doi: 10.1098/rsta.2009.0083.  Google Scholar

[63]

Appl. Optics, 49 (2010), 3566-3572. doi: 10.1364/AO.49.003566.  Google Scholar

show all references

References:
[1]

Inv. Probl., 23 (2007), 2089-2102. doi: 10.1088/0266-5611/23/5/016.  Google Scholar

[2]

Inv. Probl., 23 (2007), S21-S35. doi: 10.1088/0266-5611/23/6/S03.  Google Scholar

[3]

Inverse Probl., 22 (2006), 175-195. doi: 10.1088/0266-5611/22/1/010.  Google Scholar

[4]

Inv. Probl., 26 (2010), 025011, 35pp. doi: 10.1088/0266-5611/26/2/025011.  Google Scholar

[5]

Inv. Probl., 26 (2010), 085010, 20pp. doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[6]

Inv. Probl., 27 (2011), 075003, 20pp. doi: 10.1088/0266-5611/27/7/075003.  Google Scholar

[7]

Inv. Probl., 28 (2012), 025010, 13pp. doi: 10.1088/0266-5611/28/2/025010.  Google Scholar

[8]

J. Opt. Soc. Am. A, 25 (2008), 2347-2356. Google Scholar

[9]

Interface Focus, 1 (2011), 602-631. doi: 10.1098/rsfs.2011.0028.  Google Scholar

[10]

IEEE. Trans. Biomed. Eng., 59 (2012), 1354-1363. Google Scholar

[11]

Med. Phys., 38 (2011), 1694-1704. doi: 10.1118/1.3556916.  Google Scholar

[12]

Phys. Rev. E, 75 (2007), 046706. doi: 10.1103/PhysRevE.75.046706.  Google Scholar

[13]

Addison-Wesley, Academic Press, 1967.  Google Scholar

[14]

IEEE J. Quantum Electron, 26 (1990), 2166-2185. doi: 10.1109/3.64354.  Google Scholar

[15]

Appl. Optics, 45 (2006), 1866-1875. doi: 10.1364/AO.45.001866.  Google Scholar

[16]

Inv. Probl., 23 (2007), S95-S112. doi: 10.1088/0266-5611/23/6/S08.  Google Scholar

[17]

J. Opt. Soc. Am. A, 26 (2009), 443-455. doi: 10.1364/JOSAA.26.000443.  Google Scholar

[18]

IEEE Trans. Med. Imaging, 29 (2010), 387-396. doi: 10.1109/TMI.2009.2032358.  Google Scholar

[19]

Contemp. Math., 559 (2011), 1-12. doi: 10.1090/conm/559/11067.  Google Scholar

[20]

SIAM J. Math. Anal., 35 (2004), 1213-1240. doi: 10.1137/S0036141002417814.  Google Scholar

[21]

Inv. Probl., 22 (2006), 923-938. doi: 10.1088/0266-5611/22/3/012.  Google Scholar

[22]

SIAM J. Math. Anal., 68 (2007), 392-412. doi: 10.1137/070682137.  Google Scholar

[23]

Inv. Probl., 23 (2007), S37-S49. doi: 10.1088/0266-5611/23/6/S04.  Google Scholar

[24]

UCLA CAM Report 10-42, 2010. Google Scholar

[25]

Lecture Notes in Math., 2035 (2012), 131-158. doi: 10.1007/978-3-642-22990-9_5.  Google Scholar

[26]

Math. Meth. Appl. Sci., 28 (2005), 1919-1937. doi: 10.1002/mma.648.  Google Scholar

[27]

Opt. Express, 13 (2005), 296-308. doi: 10.1364/OPEX.13.000296.  Google Scholar

[28]

J. Biomed. Opt., 17 (2012), 096012. doi: 10.1117/1.JBO.17.9.096012.  Google Scholar

[29]

Inv. Probl., 24 (2008), 055006, 25pp. doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[30]

Academic Press, 1978.  Google Scholar

[31]

Phys. Med. Biol., 51 (2006), 6437-6448. doi: 10.1088/0031-9155/51/24/010.  Google Scholar

[32]

Med. Phys., 39 (2012), 7262-7271. doi: 10.1118/1.4764911.  Google Scholar

[33]

Springer, New York, 2005.  Google Scholar

[34]

J. Comput. Appl. Math, 198 (2007), 493-504. doi: 10.1016/j.cam.2005.09.027.  Google Scholar

[35]

in Bayesian Theory and Applications (eds. P. Damien, P. Dellaportas, N. G. Polson and D. A. Stephens), Oxford University Press (2013), 544-672. Google Scholar

[36]

J. Opts. Soc. Am. A, 26 (2009), 2257-2268. doi: 10.1364/JOSAA.26.002257.  Google Scholar

[37]

Int. J. Uncertain. Quantif., 1 (2011), 1-17. doi: 10.1615/Int.J.UncertaintyQuantification.v1.i1.10.  Google Scholar

[38]

Inv. Probl., 23 (2007), 373-383. doi: 10.1088/0266-5611/23/1/021.  Google Scholar

[39]

Inv. Probl., 23 (2007), S11-S20. doi: 10.1088/0266-5611/23/6/S02.  Google Scholar

[40]

Appl. Optics, 49 (2010), 1219-1233. doi: 10.1364/AO.49.001219.  Google Scholar

[41]

Phys. Med. Biol., 54 (2009), R59-R97. doi: 10.1088/0031-9155/54/19/R01.  Google Scholar

[42]

Phys. Med. Biol., 58 (2013), 999-1011. doi: 10.1088/0031-9155/58/4/999.  Google Scholar

[43]

Communications in Mathematical Sciences, 12 (2014), 201-234. arXiv:1207.4664v1 [math.NA] doi: 10.4310/CMS.2014.v12.n2.a1.  Google Scholar

[44]

Phys. Med. Biol., 39 (1994), 177-196. doi: 10.1088/0031-9155/39/1/011.  Google Scholar

[45]

Anal. Biochem., 227 (1995), 54-68. doi: 10.1006/abio.1995.1252.  Google Scholar

[46]

Inverse Probl. Imag., 6 (2012), 315-320. doi: 10.3934/ipi.2012.6.315.  Google Scholar

[47]

Ultrasonic Imaging, 1 (1979), 210-231. doi: 10.1016/0161-7346(79)90017-8.  Google Scholar

[48]

J. Acoust. Soc. Am., 67 (1980), 1266-1273. doi: 10.1121/1.384168.  Google Scholar

[49]

IEEE. Trans. Biomed. Eng., BME-28 (1981), 202-220. doi: 10.1109/TBME.1981.324791.  Google Scholar

[50]

UCLA CAM Report 10-81 (2010). Google Scholar

[51]

Inv. Probl., 29 (2013), 075006, 19pp. doi: 10.1088/0266-5611/29/7/075006.  Google Scholar

[52]

Appl. Optics, 50 (2011), 3145-3154. doi: 10.1364/AO.50.003145.  Google Scholar

[53]

Inv. Probl., 26 (2010), 015005, 18pp. doi: 10.1088/0266-5611/26/1/015005.  Google Scholar

[54]

Inv. Probl., 28 (2012), 084009, 17pp. doi: 10.1088/0266-5611/28/8/084009.  Google Scholar

[55]

Inverse Probl., 26 (2010), 115003, 20pp. doi: 10.1088/0266-5611/26/11/115003.  Google Scholar

[56]

Phys. Med. Biol., 57 (2012), 5399-5423. doi: 10.1088/0031-9155/57/17/5399.  Google Scholar

[57]

IEEE Trans. Biomed. Eng., 50 (2003), 1086-1099. Google Scholar

[58]

Phys. Rev. E., 71 (2005), 016706. doi: 10.1103/PhysRevE.71.016706.  Google Scholar

[59]

Phys. Med. Biol., 55 (2010), 1917-1934. doi: 10.1088/0031-9155/55/7/009.  Google Scholar

[60]

Opt. Lett., 32 (2007), 2556-2558. doi: 10.1364/OL.32.002556.  Google Scholar

[61]

Med. Phys., 34 (2007), 538-546. doi: 10.1118/1.2409234.  Google Scholar

[62]

Phil. Trans. R. Soc. A, 367 (2009), 3045-3054. doi: 10.1098/rsta.2009.0083.  Google Scholar

[63]

Appl. Optics, 49 (2010), 3566-3572. doi: 10.1364/AO.49.003566.  Google Scholar

[1]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[2]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[5]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[6]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[7]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[8]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[10]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[11]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[12]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[15]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

[16]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[17]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[18]

Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078

[19]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[20]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (10)

[Back to Top]