# American Institute of Mathematical Sciences

November  2014, 8(4): 991-1012. doi: 10.3934/ipi.2014.8.991

## Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

 1 University of Genoa, Department of Mathematics, Via Dodecaneso 35, 16146 Genoa, Italy 2 Danmarks Tekniske Universitet, Department of Applied Mathematics and Computer Science, Matematiktorvet, Building 303 B, DK - 2800 Kgs. Lyngby

Received  May 2014 Revised  October 2014 Published  November 2014

The Calderón problem is the mathematical formulation of the inverse problem in Electrical Impedance Tomography and asks for the uniqueness and reconstruction of an electrical conductivity distribution in a bounded domain from the knowledge of the Dirichlet-to-Neumann map associated to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nyström method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value problem is solved for the conductivity distribution. To test the performance of the algorithm highly accurate data is required, and to this end a boundary element method is developed and implemented for the forward problem. The numerical reconstruction algorithm is tested on simulated data and compared to the simpler approximations. In addition, convergence of the numerical solution towards the exact solution of the boundary integral equation is proved.
Citation: Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991
##### References:
 [1] A. Abubakar, T. M. Habashy, M. Li and J. Liu, Inversion algorithms for large-scale geophysical electromagnetic,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123012.  Google Scholar [2] G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar [3] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements,, J. Differential Equations, 84 (1990), 252.  doi: 10.1016/0022-0396(90)90078-4.  Google Scholar [4] K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar [5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide,, 3rd edition, (1999).  doi: 10.1137/1.9780898719604.  Google Scholar [6] J. Bikowski, K. Knudsen and J. L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/1/015002.  Google Scholar [7] G. Boverman, T.-J. Kao, D. Isaacson and G. J. Saulnier, An implementation of Calderón's Method for 3-D Limited-View EIT,, IEEE Trans. Med. Imaging, 28 (2009), 1073.  doi: 10.1109/tmi.2009.2012892.  Google Scholar [8] R. M. Brown and G. A. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions,, Comm. Partial Differential Equations, 22 (1997), 1009.  doi: 10.1080/03605309708821292.  Google Scholar [9] Alberto-P. Calderón, On an inverse boundary value problem,, In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, (1980), 65.   Google Scholar [10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences,, 3rd edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar [11] H. Cornean, K. Knudsen and S. Siltanen, Towards a $d$-bar reconstruction method for three-dimensional EIT,, J. Inverse Ill-Posed Probl., 14 (2006), 111.  doi: 10.1515/156939406777571102.  Google Scholar [12] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,, ACM Transactions on Mathematical Software, 30 (2004), 165.  doi: 10.1145/992200.992205.  Google Scholar [13] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization,, SIAM Journal on Matrix Analysis and Applications, 18 (1997), 140.  doi: 10.1137/S0895479894246905.  Google Scholar [14] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices,, ACM Transactions on Mathematical Software, 25 (1999), 1.  doi: 10.1145/305658.287640.  Google Scholar [15] T. A. Davis and I. S. Duff, Algorithm 832: Umfpack v4.3-an unsymmetric-pattern multifrontal method,, ACM Transactions on Mathematical Software, 30 (2004), 196.  doi: 10.1145/992200.992206.  Google Scholar [16] F. Delbary, P. C. Hansen and K. Knudsen, Electrical impedance tomography: 3D reconstructions using scattering transforms,, Appl. Anal., 91 (2012), 737.  doi: 10.1080/00036811.2011.598863.  Google Scholar [17] F. Delbary and K. Knudsen, Regularized electrical impedance tomography using truncated scattering transforms,, In preparation., ().   Google Scholar [18] F. Delbary and R. Kress, Electrical impedance tomography with point electrodes,, J. Integral Equations Appl., 22 (2010), 193.  doi: 10.1216/JIE-2010-22-2-193.  Google Scholar [19] F. Delbary and R. Kress, Electrical impedance tomography using a point electrode inverse scheme for complete electrode data,, Inverse Probl. Imaging, 5 (2011), 355.  doi: 10.3934/ipi.2011.5.355.  Google Scholar [20] M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 1.  doi: 10.1109/JPROC.2004.840301.  Google Scholar [21] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth and F. Rossi, GNU Scientific Library Reference Manual,, 3rd edition, (2009).   Google Scholar [22] M. Ganesh and I. G. Graham, A high-order algorithm for obstacle scattering in three dimensions,, J. Comput. Phys., 198 (2004), 211.  doi: 10.1016/j.jcp.2004.01.007.  Google Scholar [23] C. Geuzaine and R. J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,, International Journal for Numerical Methods in Engineering, 79 (2009), 1309.  doi: 10.1002/nme.2579.  Google Scholar [24] K. Hesse and I. H. Sloan, Cubature over the sphere $S^2$ in Sobolev spaces of arbitrary order,, J. Approx. Theory, 141 (2006), 118.  doi: 10.1016/j.jat.2006.01.004.  Google Scholar [25] K. Hesse and I. H. Sloan, Hyperinterpolation on the sphere,, in Frontiers in interpolation and approximation, (2007), 213.   Google Scholar [26] D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications,, Series in Medical Physics and Biomedical Engineering, (2004).  doi: 10.1201/9781420034462.  Google Scholar [27] O. Ivanyshyn and R. Kress, Inverse scattering for surface impedance from phase-less far field data,, J. Comput. Phys., 230 (2011), 3443.  doi: 10.1016/j.jcp.2011.01.038.  Google Scholar [28] K. Knudsen, A new direct method for reconstructing isotropic conductivities in the plane,, Physiological Measurement, 24 (2003), 391.  doi: 10.1088/0967-3334/24/2/351.  Google Scholar [29] K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Probl. Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar [30] K. Knudsen and J. L. Mueller, The Born approximation and Calderón's method for reconstruction of conductivities in 3-D,, Discrete Contin. Dyn. Syst., II (2011), 844.   Google Scholar [31] K. Knudsen and A. Tamasan, Reconstruction of less regular conductivities in the plane,, Comm. Partial Differential Equations, 29 (2004), 361.  doi: 10.1081/pde-120030401.  Google Scholar [32] R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences,, 3rd edition, (2014).  doi: 10.1007/978-1-4614-9593-2.  Google Scholar [33] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar [34] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar [35] J. L. Mueller and S. Siltanen, Direct reconstructions of conductivities from boundary measurements,, SIAM J. Sci. Comput., 24 (2003), 1232.  doi: 10.1137/S1064827501394568.  Google Scholar [36] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications,, Computational Science & Engineering, (2012).  doi: 10.1137/1.9781611972344.  Google Scholar [37] A. Nachman, J. Sylvester and G. Uhlmann, An n-dimensional Borg-Levinson theorem,, Comm. Math. Phys., 115 (1988), 595.  doi: 10.1007/BF01224129.  Google Scholar [38] A. I. Nachman, Reconstructions from boundary measurements,, Ann. of Math. (2), 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar [39] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math. (2), 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar [40] R. G. Newton, Inverse Schrödinger Scattering in Three Dimensions,, Texts and Monographs in Physics, (1989).  doi: 10.1007/978-3-642-83671-8.  Google Scholar [41] R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta\psi +(v(x)-Eu(x))\psi=0$,, Funktsional. Anal. i Prilozhen., 22 (1988), 11.  doi: 10.1007/bf01077418.  Google Scholar [42] S. Siltanen, J. Mueller and D. Isaacson, Erratum: "An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem [Inverse Problems 16 (2000), 681-699; MR:1766226 (2001g:35269)],, Inverse Problems, 17 (2001), 1561.  doi: 10.1088/0266-5611/17/5/501.  Google Scholar [43] S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem,, Inverse Problems, 16 (2000), 681.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar [44] O. Steinbach and W. L. Wendland, On C. Neumann's method for second-order elliptic systems in domains with non-smooth boundaries,, J. Math. Anal. Appl., 262 (2001), 733.  doi: 10.1006/jmaa.2001.7615.  Google Scholar [45] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math. (2), 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar [46] G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar [47] L. Wienert, Die Numerische Approximation von Randintegraloperatoren Für die Helmholtzgleichung im $\mathbbR^3$, 1990,, Thesis (Ph.D.)-Georg-August-Universität Göttingen., ().   Google Scholar [48] T. A. York, \doititle{Status of electrical tomography in industrial applications},, J. Electron. Imaging., 10 (2001), 608.  doi: 10.1117/1.1377308.  Google Scholar

show all references

##### References:
 [1] A. Abubakar, T. M. Habashy, M. Li and J. Liu, Inversion algorithms for large-scale geophysical electromagnetic,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123012.  Google Scholar [2] G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar [3] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements,, J. Differential Equations, 84 (1990), 252.  doi: 10.1016/0022-0396(90)90078-4.  Google Scholar [4] K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar [5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide,, 3rd edition, (1999).  doi: 10.1137/1.9780898719604.  Google Scholar [6] J. Bikowski, K. Knudsen and J. L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/1/015002.  Google Scholar [7] G. Boverman, T.-J. Kao, D. Isaacson and G. J. Saulnier, An implementation of Calderón's Method for 3-D Limited-View EIT,, IEEE Trans. Med. Imaging, 28 (2009), 1073.  doi: 10.1109/tmi.2009.2012892.  Google Scholar [8] R. M. Brown and G. A. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions,, Comm. Partial Differential Equations, 22 (1997), 1009.  doi: 10.1080/03605309708821292.  Google Scholar [9] Alberto-P. Calderón, On an inverse boundary value problem,, In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, (1980), 65.   Google Scholar [10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences,, 3rd edition, (2013).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar [11] H. Cornean, K. Knudsen and S. Siltanen, Towards a $d$-bar reconstruction method for three-dimensional EIT,, J. Inverse Ill-Posed Probl., 14 (2006), 111.  doi: 10.1515/156939406777571102.  Google Scholar [12] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,, ACM Transactions on Mathematical Software, 30 (2004), 165.  doi: 10.1145/992200.992205.  Google Scholar [13] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization,, SIAM Journal on Matrix Analysis and Applications, 18 (1997), 140.  doi: 10.1137/S0895479894246905.  Google Scholar [14] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices,, ACM Transactions on Mathematical Software, 25 (1999), 1.  doi: 10.1145/305658.287640.  Google Scholar [15] T. A. Davis and I. S. Duff, Algorithm 832: Umfpack v4.3-an unsymmetric-pattern multifrontal method,, ACM Transactions on Mathematical Software, 30 (2004), 196.  doi: 10.1145/992200.992206.  Google Scholar [16] F. Delbary, P. C. Hansen and K. Knudsen, Electrical impedance tomography: 3D reconstructions using scattering transforms,, Appl. Anal., 91 (2012), 737.  doi: 10.1080/00036811.2011.598863.  Google Scholar [17] F. Delbary and K. Knudsen, Regularized electrical impedance tomography using truncated scattering transforms,, In preparation., ().   Google Scholar [18] F. Delbary and R. Kress, Electrical impedance tomography with point electrodes,, J. Integral Equations Appl., 22 (2010), 193.  doi: 10.1216/JIE-2010-22-2-193.  Google Scholar [19] F. Delbary and R. Kress, Electrical impedance tomography using a point electrode inverse scheme for complete electrode data,, Inverse Probl. Imaging, 5 (2011), 355.  doi: 10.3934/ipi.2011.5.355.  Google Scholar [20] M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 1.  doi: 10.1109/JPROC.2004.840301.  Google Scholar [21] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth and F. Rossi, GNU Scientific Library Reference Manual,, 3rd edition, (2009).   Google Scholar [22] M. Ganesh and I. G. Graham, A high-order algorithm for obstacle scattering in three dimensions,, J. Comput. Phys., 198 (2004), 211.  doi: 10.1016/j.jcp.2004.01.007.  Google Scholar [23] C. Geuzaine and R. J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,, International Journal for Numerical Methods in Engineering, 79 (2009), 1309.  doi: 10.1002/nme.2579.  Google Scholar [24] K. Hesse and I. H. Sloan, Cubature over the sphere $S^2$ in Sobolev spaces of arbitrary order,, J. Approx. Theory, 141 (2006), 118.  doi: 10.1016/j.jat.2006.01.004.  Google Scholar [25] K. Hesse and I. H. Sloan, Hyperinterpolation on the sphere,, in Frontiers in interpolation and approximation, (2007), 213.   Google Scholar [26] D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications,, Series in Medical Physics and Biomedical Engineering, (2004).  doi: 10.1201/9781420034462.  Google Scholar [27] O. Ivanyshyn and R. Kress, Inverse scattering for surface impedance from phase-less far field data,, J. Comput. Phys., 230 (2011), 3443.  doi: 10.1016/j.jcp.2011.01.038.  Google Scholar [28] K. Knudsen, A new direct method for reconstructing isotropic conductivities in the plane,, Physiological Measurement, 24 (2003), 391.  doi: 10.1088/0967-3334/24/2/351.  Google Scholar [29] K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Probl. Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar [30] K. Knudsen and J. L. Mueller, The Born approximation and Calderón's method for reconstruction of conductivities in 3-D,, Discrete Contin. Dyn. Syst., II (2011), 844.   Google Scholar [31] K. Knudsen and A. Tamasan, Reconstruction of less regular conductivities in the plane,, Comm. Partial Differential Equations, 29 (2004), 361.  doi: 10.1081/pde-120030401.  Google Scholar [32] R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences,, 3rd edition, (2014).  doi: 10.1007/978-1-4614-9593-2.  Google Scholar [33] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar [34] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar [35] J. L. Mueller and S. Siltanen, Direct reconstructions of conductivities from boundary measurements,, SIAM J. Sci. Comput., 24 (2003), 1232.  doi: 10.1137/S1064827501394568.  Google Scholar [36] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications,, Computational Science & Engineering, (2012).  doi: 10.1137/1.9781611972344.  Google Scholar [37] A. Nachman, J. Sylvester and G. Uhlmann, An n-dimensional Borg-Levinson theorem,, Comm. Math. Phys., 115 (1988), 595.  doi: 10.1007/BF01224129.  Google Scholar [38] A. I. Nachman, Reconstructions from boundary measurements,, Ann. of Math. (2), 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar [39] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math. (2), 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar [40] R. G. Newton, Inverse Schrödinger Scattering in Three Dimensions,, Texts and Monographs in Physics, (1989).  doi: 10.1007/978-3-642-83671-8.  Google Scholar [41] R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta\psi +(v(x)-Eu(x))\psi=0$,, Funktsional. Anal. i Prilozhen., 22 (1988), 11.  doi: 10.1007/bf01077418.  Google Scholar [42] S. Siltanen, J. Mueller and D. Isaacson, Erratum: "An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem [Inverse Problems 16 (2000), 681-699; MR:1766226 (2001g:35269)],, Inverse Problems, 17 (2001), 1561.  doi: 10.1088/0266-5611/17/5/501.  Google Scholar [43] S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem,, Inverse Problems, 16 (2000), 681.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar [44] O. Steinbach and W. L. Wendland, On C. Neumann's method for second-order elliptic systems in domains with non-smooth boundaries,, J. Math. Anal. Appl., 262 (2001), 733.  doi: 10.1006/jmaa.2001.7615.  Google Scholar [45] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math. (2), 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar [46] G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123011.  Google Scholar [47] L. Wienert, Die Numerische Approximation von Randintegraloperatoren Für die Helmholtzgleichung im $\mathbbR^3$, 1990,, Thesis (Ph.D.)-Georg-August-Universität Göttingen., ().   Google Scholar [48] T. A. York, \doititle{Status of electrical tomography in industrial applications},, J. Electron. Imaging., 10 (2001), 608.  doi: 10.1117/1.1377308.  Google Scholar
 [1] Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217 [2] Erfang Ma. Integral formulation of the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2020, 14 (2) : 385-398. doi: 10.3934/ipi.2020017 [3] Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485 [4] Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251 [5] Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems & Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051 [6] Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495 [7] Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021 [8] Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013 [9] Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299 [10] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767 [11] Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531 [12] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749 [13] Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020 [14] Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107 [15] Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026 [16] Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25 [17] Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417 [18] Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211 [19] Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423 [20] Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

2018 Impact Factor: 1.469