\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem

Abstract / Introduction Related Papers Cited by
  • We consider the interior transmission problem associated with the scattering by an inhomogeneous (possibly anisotropic) highly oscillating periodic media. We show that, under appropriate assumptions, the solution of the interior transmission problem converges to the solution of a homogenized problem as the period goes to zero. Furthermore, we prove that the associated real transmission eigenvalues converge to transmission eigenvalues of the homogenized problem. Finally we show how to use the first transmission eigenvalue of the period media, which is measurable from the scattering data, to obtain information about constant effective material properties of the periodic media. The convergence results presented here are not optimal. Such results with rate of convergence involve the analysis of the boundary correction and will be subject of a forthcoming paper.
    Mathematics Subject Classification: Primary: 35R30, 35Q60, 35J40, 78A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [2]

    G. Allaire, Shape Optimization by the Homogenization Method, Springer, New York, 2002.doi: 10.1007/978-1-4684-9286-6.

    [3]

    A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, AMS Chelsea Publishing, Providence, 1978.

    [4]

    E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter, Commun. Math. Phys, 331 (2014), 725-753.doi: 10.1007/s00220-014-2030-0.

    [5]

    A. S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci., Ser. I, 349 (2011), 647-651.doi: 10.1016/j.crma.2011.05.008.

    [6]

    F. Cakoni and D. Colton, Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014.doi: 10.1007/978-1-4614-8827-9.

    [7]

    F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, Ser I, 348 (2010), 379-383.doi: 10.1016/j.crma.2010.02.003.

    [8]

    F. Cakoni and D. Gintides, The interior transmission eigenvalue problem, SIAM J. Math. Analysis, 42 (2010), 2912-2921.doi: 10.1137/100793542.

    [9]

    F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data, J. Integral Eqns. Appl., 21 (2009), 203-227.doi: 10.1216/JIE-2009-21-2-203.

    [10]

    F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media, J.Comp. Appl. Math., 146 (2002), 285-299.doi: 10.1016/S0377-0427(02)00361-8.

    [11]

    F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Analysis, 42 (2010), 145-162.doi: 10.1137/090754637.

    [12]

    F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp.doi: 10.1088/0266-5611/26/7/074004.

    [13]

    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.

    [14]

    F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, Inverse Problems and Applications, Inside Out, MSRI Publications, Berkeley, 60 (2013), 529-580.

    [15]

    F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media, in Mathematical and Numerical Aspects of Wave Propagation-WAVES 2003 (eds. Cohen et al.), Springer, Berlin, 2003, 613-618.

    [16]

    F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493.doi: 10.1080/00036810802713966.

    [17]

    F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. Jour. Comp. Sci. Math., 3 (2010), 142-167.doi: 10.1504/IJCSM.2010.033932.

    [18]

    A. Cossonnière, Valeurs Propres de Transmission et leur Utilisation dans L'identification D'inclusions à Partir de Mesures Électromagnètiques, PhD thesis, University of Toulouse, 2011.

    [19]

    G. Giovanni and H. Haddar, Computing estimates on material properties from transmission eigenvalues, Inverse Problems, 28 (2012), 055009, 23pp.doi: 10.1088/0266-5611/28/5/055009.

    [20]

    I. HarrisNon-destructive Testing of Anisotropic Materials, Ph.D. Thesis, University of Delaware.

    [21]

    I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Problems, 30 (2014), 035016, 21pp.doi: 10.1088/0266-5611/30/3/035016.

    [22]

    C. E. Kenig, F. Lin and Z. Shen, Estimates of eigenvalues and eigenfunctions in periodic homogenization, J. Euro. Math. Soc., 15 (2013), 1901-1925.doi: 10.4171/JEMS/408.

    [23]

    C. E. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Rat. Mech. Anal., 203 (2012), 1009-1036.doi: 10.1007/s00205-011-0469-0.

    [24]

    C. E. Kenig, F. Lin and Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937.doi: 10.1090/S0894-0347-2013-00769-9.

    [25]

    S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 1, Appl. Math. Optim., 5 (1979), 153-167.doi: 10.1007/BF01442551.

    [26]

    S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 2, Appl. Math. Optim., 5 (1979), 197-216.doi: 10.1007/BF01442554.

    [27]

    A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp.doi: 10.1088/0266-5611/29/10/104011.

    [28]

    E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.doi: 10.1137/11084738X.

    [29]

    E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards, J. Phys. A: Math. Theor., 45 (2012), 125202, 10pp.doi: 10.1088/1751-8113/45/12/125202.

    [30]

    S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299.doi: 10.1017/S0308210500027050.

    [31]

    S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. The case of Neumann boundary conditions, preprint, Rutgers University, 1997.

    [32]

    L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp.doi: 10.1088/0266-5611/29/10/104001.

    [33]

    F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite medium, SIAM J. Appl. Math., 53 (1993), 1636-1668.doi: 10.1137/0153076.

    [34]

    J. Sun, Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49 (2011), 1860-1874.doi: 10.1137/100785478.

    [35]

    J. Sun and L. Xu, Computation of Maxwell's transmission eigenvalues and its applications in inverse medium problems, Inverse Problems, 29 (2013), 104013, 18pp.doi: 10.1088/0266-5611/29/10/104013.

    [36]

    A. Wautier and B. Guzina, On the second-order homogenization of wave motion in periodic media and the sound of chessboard, J. Mech. Phys. Solids, 78 (2015), 382-414.doi: 10.1016/j.jmps.2015.03.001.

    [37]

    J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.doi: 10.1017/CBO9781139171755.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return