2015, 9(1): 143-161. doi: 10.3934/ipi.2015.9.143

The broken ray transform in $n$ dimensions with flat reflecting boundary

1. 

University of Houston Department of Mathematics, Department of Mathematics, 641 PGH, Houston, TX 77204-3008, United States

Received  November 2013 Revised  September 2014 Published  January 2015

We study the broken ray transform on $n$-dimensional Euclidean domains where the reflecting parts of the boundary are flat and establish injectivity and stability under certain conditions. Given a subset $E$ of the boundary $\partial \Omega$ such that $\partial \Omega \setminus E$ is itself flat (contained in a union of hyperplanes), we measure the attenuation of all broken rays starting and ending at $E$ with the standard optical reflection rule applied to $\partial \Omega \setminus E$. By localizing the measurement operator around broken rays which reflect off a fixed sequence of flat hyperplanes, we can apply the analytic microlocal approach of Frigyik, Stefanov, and Uhlmann ([7]) for the ordinary ray transform by means of a local path unfolding. This generalizes the author's previous result in [9], although we can no longer treat reflections from corner points. Similar to the result for the two dimensional square, we show that the normal operator is a classical pseudo differential operator of order $-1$ plus a smoothing term with $C_{0}^{\infty}$ Schwartz kernel.
Citation: Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143
References:
[1]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006.

[2]

J. Boman, Novikov's inversion formula for the attenuated Radon transform-a new approach,, J. Geom. Anal., 14 (2004), 185. doi: 10.1007/BF02922067.

[3]

E. Chappa, On the characterization of the kernel of the geodesic X-ray transform,, Trans. Amer. Math. Soc., 358 (2006), 4793. doi: 10.1090/S0002-9947-06-04059-1.

[4]

G. Eskin, Inverse boundary value problems in domains with several obstacles,, Inverse Problems, 20 (2004), 1497. doi: 10.1088/0266-5611/20/5/011.

[5]

D. Finch, Uniqueness for the attenuated x-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010.

[6]

D. Finch, The attenuated x-ray transform: recent developments,, in Inside out: inverse problems and applications (series Math. Sci. Res. Inst. Publ.), 47 (2003), 47.

[7]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89. doi: 10.1007/s12220-007-9007-6.

[8]

E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries,, J. Geom. Phys., 40 (2002), 277. doi: 10.1016/S0393-0440(01)00039-0.

[9]

M. Hubenthal, The broken ray transform on the square,, J. Fourier Anal. Appl., 20 (2014), 1050. doi: 10.1007/s00041-014-9344-3.

[10]

J. Ilmavirta, Broken ray tomography in the disc,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/3/035008.

[11]

J. Ilmavirta, A Reflection Approach to the Broken Ray Transform,, preprint, ().

[12]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Anal. PDE, 6 (2013), 2003. doi: 10.2140/apde.2013.6.2003.

[13]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[14]

F. Natterer, The Mathematics of Computerized Tomography,, SIAM, (2001). doi: 10.1137/1.9780898719284.

[15]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation,, Inverse Problems, 18 (2002), 677. doi: 10.1088/0266-5611/18/3/310.

[16]

R. G. Novikov, An inversion formula for the attenuated X-ray transformation,, Ark. Mat., 40 (2002), 145. doi: 10.1007/BF02384507.

[17]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$,, SIAM J. Math. Anal., 24 (1993), 1215. doi: 10.1137/0524069.

[18]

E. T. Quinto, An introduction to X-ray tomography and Radon transforms,, in The Radon transform, 63 (2006), 1. doi: 10.1090/psapm/063/2208234.

[19]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445. doi: 10.1215/S0012-7094-04-12332-2.

[20]

P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics,, J. Amer. Math. Soc., 18 (2005), 975. doi: 10.1090/S0894-0347-05-00494-7.

[21]

P. Stefanov, Microlocal approach to tensor tomography and boundary and lens rigidity,, Serdica Math. J., 34 (2008), 67.

[22]

P. Stefanov and G. Uhlmann, An inverse source problem in optical molecular imaging,, Anal. PDE, 1 (2008), 115. doi: 10.2140/apde.2008.1.115.

[23]

P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics,, Anal. PDE, 5 (2012), 219. doi: 10.2140/apde.2012.5.219.

[24]

S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).

[25]

G. Uhlmann and A. Vasy, The Inverse Problem for the Local Geodesic Ray Transform,, preprint, ().

show all references

References:
[1]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006.

[2]

J. Boman, Novikov's inversion formula for the attenuated Radon transform-a new approach,, J. Geom. Anal., 14 (2004), 185. doi: 10.1007/BF02922067.

[3]

E. Chappa, On the characterization of the kernel of the geodesic X-ray transform,, Trans. Amer. Math. Soc., 358 (2006), 4793. doi: 10.1090/S0002-9947-06-04059-1.

[4]

G. Eskin, Inverse boundary value problems in domains with several obstacles,, Inverse Problems, 20 (2004), 1497. doi: 10.1088/0266-5611/20/5/011.

[5]

D. Finch, Uniqueness for the attenuated x-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010.

[6]

D. Finch, The attenuated x-ray transform: recent developments,, in Inside out: inverse problems and applications (series Math. Sci. Res. Inst. Publ.), 47 (2003), 47.

[7]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights,, J. Geom. Anal., 18 (2008), 89. doi: 10.1007/s12220-007-9007-6.

[8]

E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries,, J. Geom. Phys., 40 (2002), 277. doi: 10.1016/S0393-0440(01)00039-0.

[9]

M. Hubenthal, The broken ray transform on the square,, J. Fourier Anal. Appl., 20 (2014), 1050. doi: 10.1007/s00041-014-9344-3.

[10]

J. Ilmavirta, Broken ray tomography in the disc,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/3/035008.

[11]

J. Ilmavirta, A Reflection Approach to the Broken Ray Transform,, preprint, ().

[12]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications,, Anal. PDE, 6 (2013), 2003. doi: 10.2140/apde.2013.6.2003.

[13]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309.

[14]

F. Natterer, The Mathematics of Computerized Tomography,, SIAM, (2001). doi: 10.1137/1.9780898719284.

[15]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation,, Inverse Problems, 18 (2002), 677. doi: 10.1088/0266-5611/18/3/310.

[16]

R. G. Novikov, An inversion formula for the attenuated X-ray transformation,, Ark. Mat., 40 (2002), 145. doi: 10.1007/BF02384507.

[17]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$,, SIAM J. Math. Anal., 24 (1993), 1215. doi: 10.1137/0524069.

[18]

E. T. Quinto, An introduction to X-ray tomography and Radon transforms,, in The Radon transform, 63 (2006), 1. doi: 10.1090/psapm/063/2208234.

[19]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445. doi: 10.1215/S0012-7094-04-12332-2.

[20]

P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics,, J. Amer. Math. Soc., 18 (2005), 975. doi: 10.1090/S0894-0347-05-00494-7.

[21]

P. Stefanov, Microlocal approach to tensor tomography and boundary and lens rigidity,, Serdica Math. J., 34 (2008), 67.

[22]

P. Stefanov and G. Uhlmann, An inverse source problem in optical molecular imaging,, Anal. PDE, 1 (2008), 115. doi: 10.2140/apde.2008.1.115.

[23]

P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics,, Anal. PDE, 5 (2012), 219. doi: 10.2140/apde.2012.5.219.

[24]

S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).

[25]

G. Uhlmann and A. Vasy, The Inverse Problem for the Local Geodesic Ray Transform,, preprint, ().

[1]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[2]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[3]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[4]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[5]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[6]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[7]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[8]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[9]

Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453

[10]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[11]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[12]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[13]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[14]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[15]

Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032

[16]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[17]

François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems & Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289

[18]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[19]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[20]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]