2015, 9(2): 317-335. doi: 10.3934/ipi.2015.9.317

On the range of the attenuated magnetic ray transform for connections and Higgs fields

1. 

Trinity College, Cambridge, CB2 1TQ, United Kingdom

2. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States

Received  November 2013 Revised  July 2014 Published  March 2015

For a two-dimensional simple magnetic system, we study the attenuated magnetic ray transform $I_{A,\Phi}$, with attenuation given by a unitary connection $A$ and a skew-Hermitian Higgs field $\Phi$. We give a description for the range of $I_{A,\Phi}$ acting on $\mathbb{C}^n$-valued tensor fields.
Citation: Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317
References:
[1]

G. Ainsworth, The attenuated magnetic ray transform on surfaces,, Inverse Probl. Imaging, 7 (2013), 27. doi: 10.3934/ipi.2013.7.27.

[2]

D. V. Anosov and Y. G. Sinai, Certain smooth ergodic systems [Russian],, Uspekhi Mat. Nauk., 22 (1967), 107.

[3]

V. I. Arnold, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.

[4]

V. I. Arnold and A. B. Givental, Symplectic geometry,, in Dynamical Systems IV, (1990), 1. doi: 10.1007/978-3-662-06793-2.

[5]

N. Bourbaki, Topological Vector Spaces,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-61715-7.

[6]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535. doi: 10.1016/j.aim.2007.05.014.

[7]

N. Dairbekov and G. Uhlmann, Reconstructing the metric and magnetic field from the scattering relation,, Inverse Probl. Imaging, 4 (2010), 397. doi: 10.3934/ipi.2010.4.397.

[8]

M. Dunajski, Solitons, Instantons, and Twistors,, Oxford Graduate Texts in Mathematics, (2010).

[9]

N. J. Hitchin, G. B. Segal and R. S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces,, Oxford Graduate Texts in Mathematics, (1997).

[10]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds,, Topology, 19 (1980), 301. doi: 10.1016/0040-9383(80)90015-4.

[11]

S. Kobayashi, Differential Geometry of Complex Vector Bundles,, Publications of the Mathematical Society of Japan 15, (1987). doi: 10.1515/9781400858682.

[12]

V. V. Kozlov, Calculus of variations in the large and classical mechanics,, Uspekhi Mat. Nauk, 40 (1985), 33.

[13]

N. Manton and P. Sutcliffe, Topological Solitons,, Cambridge Monographs on Mathematical Physics, (2004). doi: 10.1017/CBO9780511617034.

[14]

L. J. Mason and N. M. J. Woodhouse, Integrability, Self-duality, and Twistor Theory,, London Mathematical Society Monographs, (1996).

[15]

R. Michel, Sur la rigidité imposée par la longueur des géodésiques,, Invent. Math., 65 (1981), 71. doi: 10.1007/BF01389295.

[16]

S. P. Novikov, Variational methods and periodic solutions of equations of Kirchhoff type. II,, (Russian) Funktsional. Anal. i Prilozhen, 15 (1981), 37.

[17]

S. P. Novikov, Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.

[18]

S. P. Novikov and I. Shmel'tser, Periodic solutions of the Kirchhoff equations for the free motion of a rigid body in a liquid, and the extended Lyusternik-Schnirelmann-Morse theory. I,, (Russian) Funktsional. Anal. i Prilozhen, 15 (1981), 54.

[19]

G. P. Paternain, Transparent connections over negatively curved surfaces,, J. Mod. Dyn., 3 (2009), 311. doi: 10.3934/jmd.2009.3.311.

[20]

G. P. Paternain and M. Paternain, Anosov geodesic flows and twisted symplectic structures,, in International Congress on Dynamical Systems in Montevideo (A Tribute to Ricardo Mañé) (eds. F. Ledrappier, (1996), 132.

[21]

G. P. Paternain, M. Salo and G. Uhlmann, Spectral rigidity and invariant distributions on Anosov surfaces,, J. Diff. Geom., 98 (2014), 147.

[22]

G. P. Paternain, M. Salo, G. Uhlmann, On the range of the attenuated ray transform for unitary connections,, Int. Math. Res. Not., (2015), 873. doi: 10.1093/imrn/rnt228.

[23]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces,, Invent. Math., 193 (2013), 229. doi: 10.1007/s00222-012-0432-1.

[24]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460. doi: 10.1007/s00039-012-0183-6.

[25]

L. Pestov and G. Uhlmann, On the characterization of the range and inversion formulas for the geodesic X-ray transform,, Int. Math. Res. Not., (2004), 4331. doi: 10.1155/S1073792804142116.

[26]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math., 161 (2005), 1093. doi: 10.4007/annals.2005.161.1093.

[27]

E. Powell, Boundary Rigidity,, unpublished draft, (2014).

[28]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[29]

P. Stefanov, Personal Communication,, 12/02/2014., ().

[30]

M. E. Taylor, Partial Differential Equations I. Basic Theory,, Second edition, (2011). doi: 10.1007/978-1-4419-7055-8.

[31]

F. Treves, Topological Vector Spaces, Distributions and Kernels,, Academic Press, (1967).

show all references

References:
[1]

G. Ainsworth, The attenuated magnetic ray transform on surfaces,, Inverse Probl. Imaging, 7 (2013), 27. doi: 10.3934/ipi.2013.7.27.

[2]

D. V. Anosov and Y. G. Sinai, Certain smooth ergodic systems [Russian],, Uspekhi Mat. Nauk., 22 (1967), 107.

[3]

V. I. Arnold, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.

[4]

V. I. Arnold and A. B. Givental, Symplectic geometry,, in Dynamical Systems IV, (1990), 1. doi: 10.1007/978-3-662-06793-2.

[5]

N. Bourbaki, Topological Vector Spaces,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-61715-7.

[6]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535. doi: 10.1016/j.aim.2007.05.014.

[7]

N. Dairbekov and G. Uhlmann, Reconstructing the metric and magnetic field from the scattering relation,, Inverse Probl. Imaging, 4 (2010), 397. doi: 10.3934/ipi.2010.4.397.

[8]

M. Dunajski, Solitons, Instantons, and Twistors,, Oxford Graduate Texts in Mathematics, (2010).

[9]

N. J. Hitchin, G. B. Segal and R. S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces,, Oxford Graduate Texts in Mathematics, (1997).

[10]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds,, Topology, 19 (1980), 301. doi: 10.1016/0040-9383(80)90015-4.

[11]

S. Kobayashi, Differential Geometry of Complex Vector Bundles,, Publications of the Mathematical Society of Japan 15, (1987). doi: 10.1515/9781400858682.

[12]

V. V. Kozlov, Calculus of variations in the large and classical mechanics,, Uspekhi Mat. Nauk, 40 (1985), 33.

[13]

N. Manton and P. Sutcliffe, Topological Solitons,, Cambridge Monographs on Mathematical Physics, (2004). doi: 10.1017/CBO9780511617034.

[14]

L. J. Mason and N. M. J. Woodhouse, Integrability, Self-duality, and Twistor Theory,, London Mathematical Society Monographs, (1996).

[15]

R. Michel, Sur la rigidité imposée par la longueur des géodésiques,, Invent. Math., 65 (1981), 71. doi: 10.1007/BF01389295.

[16]

S. P. Novikov, Variational methods and periodic solutions of equations of Kirchhoff type. II,, (Russian) Funktsional. Anal. i Prilozhen, 15 (1981), 37.

[17]

S. P. Novikov, Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.

[18]

S. P. Novikov and I. Shmel'tser, Periodic solutions of the Kirchhoff equations for the free motion of a rigid body in a liquid, and the extended Lyusternik-Schnirelmann-Morse theory. I,, (Russian) Funktsional. Anal. i Prilozhen, 15 (1981), 54.

[19]

G. P. Paternain, Transparent connections over negatively curved surfaces,, J. Mod. Dyn., 3 (2009), 311. doi: 10.3934/jmd.2009.3.311.

[20]

G. P. Paternain and M. Paternain, Anosov geodesic flows and twisted symplectic structures,, in International Congress on Dynamical Systems in Montevideo (A Tribute to Ricardo Mañé) (eds. F. Ledrappier, (1996), 132.

[21]

G. P. Paternain, M. Salo and G. Uhlmann, Spectral rigidity and invariant distributions on Anosov surfaces,, J. Diff. Geom., 98 (2014), 147.

[22]

G. P. Paternain, M. Salo, G. Uhlmann, On the range of the attenuated ray transform for unitary connections,, Int. Math. Res. Not., (2015), 873. doi: 10.1093/imrn/rnt228.

[23]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces,, Invent. Math., 193 (2013), 229. doi: 10.1007/s00222-012-0432-1.

[24]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460. doi: 10.1007/s00039-012-0183-6.

[25]

L. Pestov and G. Uhlmann, On the characterization of the range and inversion formulas for the geodesic X-ray transform,, Int. Math. Res. Not., (2004), 4331. doi: 10.1155/S1073792804142116.

[26]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math., 161 (2005), 1093. doi: 10.4007/annals.2005.161.1093.

[27]

E. Powell, Boundary Rigidity,, unpublished draft, (2014).

[28]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161.

[29]

P. Stefanov, Personal Communication,, 12/02/2014., ().

[30]

M. E. Taylor, Partial Differential Equations I. Basic Theory,, Second edition, (2011). doi: 10.1007/978-1-4419-7055-8.

[31]

F. Treves, Topological Vector Spaces, Distributions and Kernels,, Academic Press, (1967).

[1]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[2]

Alexander Balandin. The localized basis functions for scalar and vector 3D tomography and their ray transforms. Inverse Problems & Imaging, 2016, 10 (4) : 899-914. doi: 10.3934/ipi.2016026

[3]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[4]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[5]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[6]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[7]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[8]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[9]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[10]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[11]

Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79

[12]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[13]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018049

[14]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[15]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[16]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[17]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[18]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[19]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[20]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]