• Previous Article
    A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors
  • IPI Home
  • This Issue
  • Next Article
    Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure
2015, 9(1): 55-77. doi: 10.3934/ipi.2015.9.55

High-order total variation regularization approach for axially symmetric object tomography from a single radiograph

1. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong, China

2. 

Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Jiangsu Province, China

3. 

Institute of Applied Physics and Computational Mathematics, Beijing, China

4. 

Centre de Mathematiques et de Leurs Applications, CNRS, ENS de Cachan, PRES UniverSud, 61 av. du President Wilson, 94235 Cachan Cedex, France

5. 

Department of Mathematics, University of Bergen, P. O. Box 7800, N-5020, Bergen, Norway

Received  June 2012 Revised  March 2014 Published  January 2015

In this paper, we consider tomographic reconstruction for axially symmetric objects from a single radiograph formed by fan-beam X-rays. All contemporary methods are based on the assumption that the density is piecewise constant or linear. From a practical viewpoint, this is quite a restrictive approximation. The method we propose is based on high-order total variation regularization. Its main advantage is to reduce the staircase effect while keeping sharp edges and enable the recovery of smoothly varying regions. The optimization problem is solved using the augmented Lagrangian method which has been recently applied in image processing. Furthermore, we use a one-dimensional (1D) technique for fan-beam X-rays to approximate 2D tomographic reconstruction for cone-beam X-rays. For the 2D problem, we treat the cone beam as fan beam located at parallel planes perpendicular to the symmetric axis. Then the density of the whole object is recovered layer by layer. Numerical results in 1D show that the proposed method has improved the preservation of edge location and the accuracy of the density level when compared with several other contemporary methods. The 2D numerical tests show that cylindrical symmetric objects can be recovered rather accurately by our high-order regularization model.
Citation: Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55
References:
[1]

R. Abraham, M. Bergounioux and E. Trelat, A penalization approach for tomographic reconstruction of binary axially symmetric objects,, Applied Mathematics and Optimization, 58 (2008), 345. doi: 10.1007/s00245-008-9039-8.

[2]

T. J. Asaki, Quantitative Abel tomography robust to noisy, corrupted and missing data,, Optimization and Engineering, 11 (2010), 381. doi: 10.1007/s11081-009-9097-z.

[3]

T. J. Asaki, R. Chartrand, K. R. Vixie and B. Wohlberg, Abel inversion using total variation regularization,, Inverse Problem, 21 (2005), 1895. doi: 10.1088/0266-5611/21/6/006.

[4]

T. Asaki, P. R. Campbell, R. Chartrand, C. E. Powell, K. R. Vixie and B. E. Wohlberg, Abel inversion using total variation regularization: Applications,, Inverse Problem in Science and Engineering, 14 (2006), 873. doi: 10.1080/17415970600882549.

[5]

R. H. T. Bates, K. L. Garden and T. M. Peters, Overview of computerized tomography with emphasis on future developments,, Proc. IEEE, 71 (1983), 356. doi: 10.1109/PROC.1983.12594.

[6]

M. Benning, C. Brune, M. Burger and J. Mueller, High-order TV methods - Enhancement via Bregman iteration,, J. Sci. Comp., 54 (2013), 269. doi: 10.1007/s10915-012-9650-3.

[7]

K. Bredies, K. Kunisch and T. Pock, Total generalized variation,, SIAM Journal on Image Sciences, 3 (2010), 492. doi: 10.1137/090769521.

[8]

K. Bredies and T. Valkonen, Inverse Problems with Second-order Total Generalized Variation Constraints,, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, (2011).

[9]

K. Bredies, K. Kunisch and T. Valkonen, Properties of L1-TGV2: The One-Dimensional Case,, SFB-Report 2011-006, (2011), 2011.

[10]

A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89. doi: 10.1023/B:JMIV.0000011321.19549.88.

[11]

T. F. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration,, SIAM J. Sci. Comput., 22 (2000), 503. doi: 10.1137/S1064827598344169.

[12]

T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images,, IEEE Trans. Circuits Syst. II, 48 (2001), 784.

[13]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model. and Simul., 4 (2005), 1168. doi: 10.1137/050626090.

[14]

D. Donoho, De-noising by soft-thresholding,, IEEE Transactions on Information Theory, 41 (1995), 613. doi: 10.1109/18.382009.

[15]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, 1999., ().

[16]

H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter,, IEEE Trans. Image Process., 10 (2001), 242.

[17]

R. Glowinski and A. Marrocco, Sur l'approximation,, Rev. Francćaise Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41.

[18]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891.

[19]

K. M. Hanson, A Bayesian Approach to Nonlinear Inversion: Abel Inversion from X-ray Attenuation Data, Maximum Entropy and Bayesian Methods in Applied Statistics,, edited by J. H. Justice, (1986).

[20]

J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I,, Springer-Verlag Berlin, (1993). doi: 10.1007/978-3-662-02796-7.

[21]

H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results,, IEEE Trans. Image Process., 4 (1995), 499. doi: 10.1109/83.370679.

[22]

F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI,, Magnetic Resonance in Medicine, 65 (2011), 480. doi: 10.1002/mrm.22595.

[23]

S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimizations,, Mathematical Programming, 83 (1998), 29. doi: 10.1007/BF02680549.

[24]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial partial differential equation with applications to medical magnetic resonance images in space and time,, IEEE Trans. Image Process., 12 (2003), 1579. doi: 10.1109/TIP.2003.819229.

[25]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional,, International Journal of Computer Vision, 66 (2006), 5. doi: 10.1007/s11263-005-3219-7.

[26]

M. Nikolova, Local strong homogeneity of a regularized estimator,, SIAM J. Appl. Math., 61 (2000), 633. doi: 10.1137/S0036139997327794.

[27]

P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images,, IEEE Trans. Image Process., 15 (2006), 1506.

[28]

R. Rockafellar, Monotone operators and the proximal point algorithm,, SIAM Journal of Control and Optimization, 14 (1976), 877. doi: 10.1137/0314056.

[29]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D., 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[30]

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems,, New York: Wiley, (1977).

[31]

C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,, SIAM J. Imaging Science, 3 (2010), 300. doi: 10.1137/090767558.

[32]

C. L. Wu, J. Y. Zhang and X. C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity,, Inverse Problems and Imaging, 5 (2010), 237. doi: 10.3934/ipi.2011.5.237.

[33]

X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space and Variational Methods in Computer Vision, Second International Conference,, SSVM 2009, 5567 (2009), 1.

show all references

References:
[1]

R. Abraham, M. Bergounioux and E. Trelat, A penalization approach for tomographic reconstruction of binary axially symmetric objects,, Applied Mathematics and Optimization, 58 (2008), 345. doi: 10.1007/s00245-008-9039-8.

[2]

T. J. Asaki, Quantitative Abel tomography robust to noisy, corrupted and missing data,, Optimization and Engineering, 11 (2010), 381. doi: 10.1007/s11081-009-9097-z.

[3]

T. J. Asaki, R. Chartrand, K. R. Vixie and B. Wohlberg, Abel inversion using total variation regularization,, Inverse Problem, 21 (2005), 1895. doi: 10.1088/0266-5611/21/6/006.

[4]

T. Asaki, P. R. Campbell, R. Chartrand, C. E. Powell, K. R. Vixie and B. E. Wohlberg, Abel inversion using total variation regularization: Applications,, Inverse Problem in Science and Engineering, 14 (2006), 873. doi: 10.1080/17415970600882549.

[5]

R. H. T. Bates, K. L. Garden and T. M. Peters, Overview of computerized tomography with emphasis on future developments,, Proc. IEEE, 71 (1983), 356. doi: 10.1109/PROC.1983.12594.

[6]

M. Benning, C. Brune, M. Burger and J. Mueller, High-order TV methods - Enhancement via Bregman iteration,, J. Sci. Comp., 54 (2013), 269. doi: 10.1007/s10915-012-9650-3.

[7]

K. Bredies, K. Kunisch and T. Pock, Total generalized variation,, SIAM Journal on Image Sciences, 3 (2010), 492. doi: 10.1137/090769521.

[8]

K. Bredies and T. Valkonen, Inverse Problems with Second-order Total Generalized Variation Constraints,, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, (2011).

[9]

K. Bredies, K. Kunisch and T. Valkonen, Properties of L1-TGV2: The One-Dimensional Case,, SFB-Report 2011-006, (2011), 2011.

[10]

A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89. doi: 10.1023/B:JMIV.0000011321.19549.88.

[11]

T. F. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration,, SIAM J. Sci. Comput., 22 (2000), 503. doi: 10.1137/S1064827598344169.

[12]

T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images,, IEEE Trans. Circuits Syst. II, 48 (2001), 784.

[13]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model. and Simul., 4 (2005), 1168. doi: 10.1137/050626090.

[14]

D. Donoho, De-noising by soft-thresholding,, IEEE Transactions on Information Theory, 41 (1995), 613. doi: 10.1109/18.382009.

[15]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, 1999., ().

[16]

H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter,, IEEE Trans. Image Process., 10 (2001), 242.

[17]

R. Glowinski and A. Marrocco, Sur l'approximation,, Rev. Francćaise Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41.

[18]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891.

[19]

K. M. Hanson, A Bayesian Approach to Nonlinear Inversion: Abel Inversion from X-ray Attenuation Data, Maximum Entropy and Bayesian Methods in Applied Statistics,, edited by J. H. Justice, (1986).

[20]

J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I,, Springer-Verlag Berlin, (1993). doi: 10.1007/978-3-662-02796-7.

[21]

H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results,, IEEE Trans. Image Process., 4 (1995), 499. doi: 10.1109/83.370679.

[22]

F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI,, Magnetic Resonance in Medicine, 65 (2011), 480. doi: 10.1002/mrm.22595.

[23]

S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimizations,, Mathematical Programming, 83 (1998), 29. doi: 10.1007/BF02680549.

[24]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial partial differential equation with applications to medical magnetic resonance images in space and time,, IEEE Trans. Image Process., 12 (2003), 1579. doi: 10.1109/TIP.2003.819229.

[25]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional,, International Journal of Computer Vision, 66 (2006), 5. doi: 10.1007/s11263-005-3219-7.

[26]

M. Nikolova, Local strong homogeneity of a regularized estimator,, SIAM J. Appl. Math., 61 (2000), 633. doi: 10.1137/S0036139997327794.

[27]

P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images,, IEEE Trans. Image Process., 15 (2006), 1506.

[28]

R. Rockafellar, Monotone operators and the proximal point algorithm,, SIAM Journal of Control and Optimization, 14 (1976), 877. doi: 10.1137/0314056.

[29]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D., 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F.

[30]

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems,, New York: Wiley, (1977).

[31]

C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,, SIAM J. Imaging Science, 3 (2010), 300. doi: 10.1137/090767558.

[32]

C. L. Wu, J. Y. Zhang and X. C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity,, Inverse Problems and Imaging, 5 (2010), 237. doi: 10.3934/ipi.2011.5.237.

[33]

X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space and Variational Methods in Computer Vision, Second International Conference,, SSVM 2009, 5567 (2009), 1.

[1]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[2]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[3]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[4]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[5]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[6]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[7]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[8]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[9]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[10]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[11]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[12]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[13]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[14]

Xihong Yan. An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game. Journal of Industrial & Management Optimization, 2016, 12 (3) : 879-890. doi: 10.3934/jimo.2016.12.879

[15]

Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45

[16]

Wei Zhu. A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method. Inverse Problems & Imaging, 2017, 11 (6) : 975-996. doi: 10.3934/ipi.2017045

[17]

Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems & Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001

[18]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[19]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018037

[20]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (4)

[Back to Top]