August  2015, 9(3): 709-723. doi: 10.3934/ipi.2015.9.709

Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials

1. 

Department of Mathematics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

2. 

Department of Mathematics, Colorado State University,101 Weber Building, Fort Colins, CO 80523-1784, United States

3. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  October 2014 Revised  February 2015 Published  July 2015

We consider inverse boundary value problems for the Schrödinger equations in two dimensions. Within less regular classes of potentials, we establish a conditional stability estimate of logarithmic order. Moreover we prove the uniqueness within $L^p$-class of potentials with $p>2$.
Citation: Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003). Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. doi: 10.1080/00036818808839730. Google Scholar

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , (). Google Scholar

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010). Google Scholar

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013). Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19. doi: 10.1515/jiip.2008.002. Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998). Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , (). Google Scholar

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, (). doi: 10.1007/s00032-013-0205-3. Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972). Google Scholar

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997). Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313. Google Scholar

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970). Google Scholar

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653. Google Scholar

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, (). doi: 10.1515/JIIP.2011.003. Google Scholar

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., (). doi: 10.1016/j.bulsci.2011.04.007. Google Scholar

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553. doi: 10.1017/S147474801200076X. Google Scholar

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., (). doi: 10.2307/1971291. Google Scholar

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011. Google Scholar

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962). Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003). Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. doi: 10.1080/00036818808839730. Google Scholar

[3]

K. Astala, D. Faraco and K. M. Rogers, Rough potential recovery in the plane, preprint,, , (). Google Scholar

[4]

E. Blåsten, The Inverse Problem of the Schrödinger Equation in the Plane: A Dissection of Bukhgeim's Result,, Licentiate thesis, (2010). Google Scholar

[5]

E. Blåsten, On the Gel'fand-Calderón Inverse Problem in Two Dimensions,, Ph.D. thesis, (2013). Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inverse Ill-Posed Probl., 16 (2008), 19. doi: 10.1515/jiip.2008.002. Google Scholar

[7]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998). Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Inverse boundary value problem for linear Schrödinger equation in two dimensions, preprint,, , (). Google Scholar

[9]

O. Yu. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems, by Dirichlet-to-Neumann map on subboundaries, (). doi: 10.1007/s00032-013-0205-3. Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972). Google Scholar

[11]

L. Liu, Stability Estimates for the Two Dimensional Inverse Conductivity Problem,, Ph.D. thesis, (1997). Google Scholar

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. doi: 10.1088/0266-5611/17/5/313. Google Scholar

[13]

C. Miranda, Partial Differential Equations of Elliptic Type,, $2^{nd}$ revised edition, (1970). Google Scholar

[14]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653. Google Scholar

[15]

R. G. Novikov and M. Santacesaria, A global stability estimate for the Gel'fand-Calderón, inverse problem in two dimensions, (). doi: 10.1515/JIIP.2011.003. Google Scholar

[16]

R. G. Novikov and M. Santacesaria, Global uniqueness and reconstruction for the, multi-channel Gel'fand-Calderón inverse problem in two dimensions., (). doi: 10.1016/j.bulsci.2011.04.007. Google Scholar

[17]

M. Santacesaria, New global stability estimates for the Calderón problem in two dimensions,, J. Inst. Math. Jussieu, 12 (2013), 553. doi: 10.1017/S147474801200076X. Google Scholar

[18]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value, problem., (). doi: 10.2307/1971291. Google Scholar

[19]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011. Google Scholar

[20]

I. N. Vekua, Generalized Analytic Functions,, Pergamon Press, (1962). Google Scholar

[1]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[2]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[3]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[4]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[5]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[6]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[7]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[8]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[9]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[10]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[11]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[12]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[13]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[14]

V. V. Motreanu. Uniqueness results for a Dirichlet problem with variable exponent. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1399-1410. doi: 10.3934/cpaa.2010.9.1399

[15]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[16]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[17]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[18]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[19]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[20]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics & Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (7)

[Back to Top]