\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions

Abstract / Introduction Related Papers Cited by
  • This paper concerns the transmission eigenvalue problem for an inhomogeneous media of compact support containing small penetrable homogeneous inclusions. Assuming that the inhomogeneous background media is known and smooth, we investigate how these small volume inclusions affect the real transmission eigenvalues. Note that for practical applications the real transmission eigenvalues are important since they can be measured from the scattering data. In particular, in addition to proving the convergence rate for the eigenvalues corresponding to the perturbed media as inclusions' volume goes to zero, we also provide the explicit first correction term in the asymptotic expansion for simple eigenvalues. The correction terms involves the eigenvalues and eigenvectors of the unperturbed known background as well as information about the location, size and refractive index of small inhomogeneities. Thus, our asymptotic formula has the potential to be used to recover information about small inclusions from a knowledge of real transmission eigenvalues.
    Mathematics Subject Classification: Primary: 35R30, 35Q60, 35J40, 78A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand-Reinhold, Princeton, NJ, 1965.

    [2]

    C. Amrouche and M. Fontes, Biharmonic problem in exterior domains of $\mathbbR^n$: An approach with weighted Sobolev spaces, J. Math. Anal. Appl., 304 (2005), 552-571.doi: 10.1016/j.jmaa.2004.09.039.

    [3]

    F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci. Paris, 348 (2010), 379-383.doi: 10.1016/j.crma.2010.02.003.

    [4]

    F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.doi: 10.1088/0266-5611/23/2/004.

    [5]

    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.

    [6]

    F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.doi: 10.1080/00036810802713966.

    [7]

    _________, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013, 529-580.

    [8]

    F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp.doi: 10.1088/0266-5611/29/10/104014.

    [9]

    D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.doi: 10.3934/ipi.2007.1.13.

    [10]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    [11]

    G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Problems, 28 (2012), 055009, 23pp.doi: 10.1088/0266-5611/28/5/055009.

    [12]

    I. Godberg and P. Lancaster, Indefinite Linear Algebra and Applications, L. Rodman, 2005.

    [13]

    A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp.doi: 10.1088/0266-5611/29/10/104011.

    [14]

    S. Moskow, Nonlinear eigenvalue approximation for compact operators, preprint, 2014.

    [15]

    J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.doi: 10.1090/S0025-5718-1975-0383117-3.

    [16]

    L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal, 40 (2008), 738-753.doi: 10.1137/070697525.

    [17]

    L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104014, 28pp.doi: 10.1088/0266-5611/29/10/104001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return