Citation: |
[1] |
G. Alessandrini, L. Del Piero and L Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse problems, 19 (2003), 973-984.doi: 10.1088/0266-5611/19/4/312. |
[2] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse problems, 25 (2009), 123004, 47pp.doi: 10.1088/0266-5611/25/12/123004. |
[3] |
K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation, Journal of Inequalities and Applications, 3 (1999), 51-64.doi: 10.1155/S1025583499000041. |
[4] |
S. Andrieux, T. N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional, Inverse problems, 22 (2006), 115-133.doi: 10.1088/0266-5611/22/1/007. |
[5] |
M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem: II. Completion, regularization and approximation, Inverse Problems, 22 (2006), 1307-1336.doi: 10.1088/0266-5611/22/4/012. |
[6] |
A. Ben Abda, J. Blum, C. Boulbe and B. Faugeras, Minimization of an energy error functional to solve a Cauchy problem arising in plasma physics: The reconstruction of the magnetic flux in the vacuum surrounding the plasma in a Tokamak, ARIMA 15 (2012), 37-60. |
[7] |
L. Baratchart, L. Bourgeois and J. Leblond, Uniqueness results for inverse Robin problems with bounded coefficient, J. Funct. Anal., 270 (2016), 2508-2542, arXiv:1412.3283.doi: 10.1016/j.jfa.2016.01.011. |
[8] |
F. Ben Belgacem, Why is the Cauchy problem severely ill-posed?, Inverse problems, 23 (2007), 823-836.doi: 10.1088/0266-5611/23/2/020. |
[9] |
F. Ben Belgacem, D. T. Du and F. Jelassi, Extended-domain-Lavrentiev's regularization for the Cauchy problem, Inverse Problems, 27 (2011), 045005, 27pp.doi: 10.1088/0266-5611/27/4/045005. |
[10] |
J. Blum, C. Boulbe and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time, Journal of Computational Physics, 231 (2012), 960-980.doi: 10.1016/j.jcp.2011.04.005. |
[11] |
Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations, Inverse Problems, 31 (2015), 035011, 21pp.doi: 10.1088/0266-5611/31/3/035011. |
[12] |
L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104.doi: 10.1088/0266-5611/21/3/018. |
[13] |
L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation, Inverse Problems, 22 (2006), 413-430.doi: 10.1088/0266-5611/22/2/002. |
[14] |
L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inverse Problems, 26 (2010), 095016, 21pp.doi: 10.1088/0266-5611/26/9/095016. |
[15] |
L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377.doi: 10.3934/ipi.2010.4.351. |
[16] |
L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system, Inverse Problems and Imaging, 8 (2014), 23-51.doi: 10.3934/ipi.2014.8.23. |
[17] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.doi: 10.1007/978-0-387-70914-7. |
[18] |
K. Bryan and L. F. Caudill, Jr., An inverse problem in thermal imaging, SIAM J. Appl. Math., 56 (1996), 715-735.doi: 10.1137/S0036139994277828. |
[19] |
E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem, Mathematics of Computation, (2016).doi: 10.1090/mcom/3092. |
[20] |
H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation, Inverse Problems, 25 (2009), 035005, 21pp.doi: 10.1088/0266-5611/25/3/035005. |
[21] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements, Inverse problems, 15 (1999), 1425-1438.doi: 10.1088/0266-5611/15/6/303. |
[22] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, SIAM, 2002.doi: 10.1137/1.9780898719208. |
[23] |
A. Cimetière, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization, Inverse problems, 17 (2001), 553-570.doi: 10.1088/0266-5611/17/3/313. |
[24] |
G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems, Electronic Journal of Differential Equations, 8 (1994), 1-9. |
[25] |
C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium, SIAM Journal on Scientific Computing, 30 (2007), 1-23.doi: 10.1137/06066970X. |
[26] |
J. Dardé, The 'exterior approach': A new framework to solve inverse obstacle problems, Inverse Problems, 28 (2012), 015008, 22pp.doi: 10.1088/0266-5611/28/1/015008. |
[27] |
J. Dardé, A. Hannukainen and N. Hyvönen, An $H_text{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems, SIAM J. Numer. Anal., 51 (2013), 2123-2148.doi: 10.1137/120895123. |
[28] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8. |
[29] |
D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical results and numerical methods, Inverse problems, 15 (1999), 41-48.doi: 10.1088/0266-5611/15/1/008. |
[30] |
P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions, Math. Models Methods Appl. Sci., 7 (1997), 957-991.doi: 10.1142/S0218202597000487. |
[31] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classic in Applied Mathematics, SIAM, 2011.doi: 10.1137/1.9781611972030. |
[32] |
H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation, SIAM J. Sci. Comput., 35 (2013), A104-A121.doi: 10.1137/110855703. |
[33] |
M. Ikehata and M. Kawashita, The enclosure method for the heat equation, Inverse Problems, 25 (2009), 075005, 10pp.doi: 10.1088/0266-5611/25/7/075005. |
[34] |
M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation, SIAM Journal on Applied Mathematics, 51 (1991), 1653-1675.doi: 10.1137/0151085. |
[35] |
R. Lattès and J. L. Lions, The Method of Quasi-reversibility: Applications to Partial Differential Equations, American Elsevier Publishing Company, 1969. |
[36] |
J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.doi: 10.1051/cocv/2011168. |
[37] |
R. E. Puzyrev and A. A. Shlapunov, On an Ill-posed problem for the heat equation, Journal of Siberian Federal University, 5 (2012), 337-348. |
[38] |
E. Sincich, Lipschitz stability for the inverse Robin problem, Inverse problems, 23 (2007), 1311-1326.doi: 10.1088/0266-5611/23/3/027. |
[39] |
A. N. Tykhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1063). |