• Previous Article
    On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences
  • IPI Home
  • This Issue
  • Next Article
    Imaging with electromagnetic waves in terminating waveguides
2016, 10(4): 899-914. doi: 10.3934/ipi.2016026

The localized basis functions for scalar and vector 3D tomography and their ray transforms

1. 

V.M. Matrosov Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences, Lermontov str. 134, 664033, Irkutsk-33, Russian Federation

Received  December 2015 Revised  July 2016 Published  October 2016

Localized basis set functions related to spherical wave functions are constructed for scalar and vector 3D tomography. The functions are truncated in a spherical domain of radius $r_0$, so that these vanish outside the domain. The analytical form of the respective scalar and vector ray transforms are obtained. So, the inversion algorithm can be reduced to solving the linear system of equations because of orthogonality and completeness of the basis functions.
Citation: Alexander Balandin. The localized basis functions for scalar and vector 3D tomography and their ray transforms. Inverse Problems & Imaging, 2016, 10 (4) : 899-914. doi: 10.3934/ipi.2016026
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, Dover Publications, (1970).

[2]

S. You, H. Tanabe, Y. Ono and A. L. Balandin, Vector and scalar tomography of compact,, Toroid Plasmas, 29 (2010), 592. doi: 10.1007/s10894-010-9317-8.

[3]

A. L. Balandin, Tomography of force-free fields,, Numerical Analysis and Applications, 8 (2015), 195. doi: 10.1134/S1995423915030015.

[4]

B. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, D. G. Esaev, M. A. Dem'yanenko and O. A. Shevchenko, Classic holography, tomography and speckle-metrology using a high-power terahertz FEL and real-time image detectors,, 35th International Conference on Infrared, (2010), 5. doi: 10.1109/ICIMW.2010.5612533.

[5]

H. Bateman and A. Erdelyi, Higher Transcendental Functions,, McGraw-Hill, (1953).

[6]

L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics. Theory and Applications, Encyclopedia of Mathematics and its Applications,, Addison-Wesley, (1981).

[7]

A. M. Cormack, Representation of a function by its line integrals, with some radiological applications,, J. Appl. Phys., 34 (1963). doi: 10.1063/1.1729798.

[8]

J. Cantarella, D. DeTurck and H. Gluck, Vector calculus and the topology of domains in 3-space,, Amer. Math. Month., 109 (2002), 409. doi: 10.2307/2695643.

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).

[10]

M. E. Davison, A singular value decomposition for the Radon transform in $n$-dimensional,, Euclidean space, 3 (1981), 321. doi: 10.1080/01630568108816093.

[11]

E. Y. Derevtsov, A. Efimov, A. K. Lois and T. Schuster, Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography,, J. Inv. Ill-Posed Prob., 19 (2011), 689. doi: 10.1515/jiip.2011.047.

[12]

E. Derevtsov, S. Kazantsev and T. Schuster, Polynomial bases for subspaces of potential and solenoidal vector fields in the unit ball of $R^3$,, J. Inv. Ill-Posed Prob., 15 (2007), 19. doi: 10.1515/JIIP.2007.002.

[13]

A. R. Edmonds, Angular Momentum in Quantum Mechanics,, Princeton University Press, (1957).

[14]

W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics,, Clarendon Press, (1998).

[15]

W. Freeden and M. Schreiner, Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup,, Springer-Verlag Berlin Heidelberg, (2009).

[16]

W. W. Hansen, A new type of expansion in radiation problems,, Phys. Rev., 47 (1935), 139. doi: 10.1103/PhysRev.47.139.

[17]

S. H. Izen, A series inversion for the X-ray transform in $n$ dimensions,, Inverse Problems, 4 (1988), 725. doi: 10.1088/0266-5611/4/3/012.

[18]

S. H. Izen, Inversion of the $k$-plane transform by orthogonal function series expansions,, Inverse Problems, 5 (1989), 181. doi: 10.1088/0266-5611/5/2/006.

[19]

S. Kazantsev and T. Schuster, Asymptotic inversion formulas in 3D vector field tomography for different geometries,, J. Inv. Ill-Posed Prob., 19 (2011), 769. doi: 10.1515/jiip.2011.049.

[20]

S. G. Kazantsev and A. A. Bukgheim, Singular value decomposition for 2D fan-beam Radon transform of tensor fields,, J. Inv. Ill-Posed Prob., 12 (2004), 245. doi: 10.1515/1569394042215865.

[21]

A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform,, SIAM J. Math. Anal., 15 (1984), 621. doi: 10.1137/0515047.

[22]

A. K. Louis, Incomplete data problems in X-ray computerized tomography I. Singular value decomposition of the limited angle transform,, Numer. Math., 48 (1986), 251. doi: 10.1007/BF01389474.

[23]

R. B. Marr, On the reconstruction of a function on a circular domain from a sampling of its line integrals,, J. Math. Anal. Appl., 45 (1974), 357. doi: 10.1016/0022-247X(74)90078-X.

[24]

P. Maass, The X-ray transform: Singular value decomposition and resolution,, Inverse Problems, 3 (1987), 729. doi: 10.1088/0266-5611/3/4/016.

[25]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics,, McGraw-Hill, (1953).

[26]

F. Natterer, The Mathematics of Computerized Tomography,, John Wiley & Sons, (1986).

[27]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, SIAM, (2001). doi: 10.1137/1.9780898718324.

[28]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, NIST and Cambridge Univ. Press, (2010).

[29]

M. Rosier, Biorthogonal series expansions of the X-ray and $k$-plane transforms,, Inverse Problems, 11 (1995), 231. doi: 10.1088/0266-5611/11/1/014.

[30]

S. Stein, Addition theorem for spherical wave functions,, Quart. Appl. Math., 19 (1961), 15.

[31]

J. A. Stratton, Electromagnetic Theory,, McGrow-Hill, (1941). doi: 10.1002/9781119134640.

[32]

D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum,, World Scientific Publishing, (1988). doi: 10.1142/0270.

[33]

L. Wang and R. S. Granetz, Expansion method in three-dimensional tomography,, J. Opt. Soc. Am. A, 10 (1993), 2292. doi: 10.1364/JOSAA.10.002292.

[34]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Univ. Press, (1995).

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,, Dover Publications, (1970).

[2]

S. You, H. Tanabe, Y. Ono and A. L. Balandin, Vector and scalar tomography of compact,, Toroid Plasmas, 29 (2010), 592. doi: 10.1007/s10894-010-9317-8.

[3]

A. L. Balandin, Tomography of force-free fields,, Numerical Analysis and Applications, 8 (2015), 195. doi: 10.1134/S1995423915030015.

[4]

B. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, D. G. Esaev, M. A. Dem'yanenko and O. A. Shevchenko, Classic holography, tomography and speckle-metrology using a high-power terahertz FEL and real-time image detectors,, 35th International Conference on Infrared, (2010), 5. doi: 10.1109/ICIMW.2010.5612533.

[5]

H. Bateman and A. Erdelyi, Higher Transcendental Functions,, McGraw-Hill, (1953).

[6]

L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics. Theory and Applications, Encyclopedia of Mathematics and its Applications,, Addison-Wesley, (1981).

[7]

A. M. Cormack, Representation of a function by its line integrals, with some radiological applications,, J. Appl. Phys., 34 (1963). doi: 10.1063/1.1729798.

[8]

J. Cantarella, D. DeTurck and H. Gluck, Vector calculus and the topology of domains in 3-space,, Amer. Math. Month., 109 (2002), 409. doi: 10.2307/2695643.

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1992).

[10]

M. E. Davison, A singular value decomposition for the Radon transform in $n$-dimensional,, Euclidean space, 3 (1981), 321. doi: 10.1080/01630568108816093.

[11]

E. Y. Derevtsov, A. Efimov, A. K. Lois and T. Schuster, Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography,, J. Inv. Ill-Posed Prob., 19 (2011), 689. doi: 10.1515/jiip.2011.047.

[12]

E. Derevtsov, S. Kazantsev and T. Schuster, Polynomial bases for subspaces of potential and solenoidal vector fields in the unit ball of $R^3$,, J. Inv. Ill-Posed Prob., 15 (2007), 19. doi: 10.1515/JIIP.2007.002.

[13]

A. R. Edmonds, Angular Momentum in Quantum Mechanics,, Princeton University Press, (1957).

[14]

W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics,, Clarendon Press, (1998).

[15]

W. Freeden and M. Schreiner, Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup,, Springer-Verlag Berlin Heidelberg, (2009).

[16]

W. W. Hansen, A new type of expansion in radiation problems,, Phys. Rev., 47 (1935), 139. doi: 10.1103/PhysRev.47.139.

[17]

S. H. Izen, A series inversion for the X-ray transform in $n$ dimensions,, Inverse Problems, 4 (1988), 725. doi: 10.1088/0266-5611/4/3/012.

[18]

S. H. Izen, Inversion of the $k$-plane transform by orthogonal function series expansions,, Inverse Problems, 5 (1989), 181. doi: 10.1088/0266-5611/5/2/006.

[19]

S. Kazantsev and T. Schuster, Asymptotic inversion formulas in 3D vector field tomography for different geometries,, J. Inv. Ill-Posed Prob., 19 (2011), 769. doi: 10.1515/jiip.2011.049.

[20]

S. G. Kazantsev and A. A. Bukgheim, Singular value decomposition for 2D fan-beam Radon transform of tensor fields,, J. Inv. Ill-Posed Prob., 12 (2004), 245. doi: 10.1515/1569394042215865.

[21]

A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform,, SIAM J. Math. Anal., 15 (1984), 621. doi: 10.1137/0515047.

[22]

A. K. Louis, Incomplete data problems in X-ray computerized tomography I. Singular value decomposition of the limited angle transform,, Numer. Math., 48 (1986), 251. doi: 10.1007/BF01389474.

[23]

R. B. Marr, On the reconstruction of a function on a circular domain from a sampling of its line integrals,, J. Math. Anal. Appl., 45 (1974), 357. doi: 10.1016/0022-247X(74)90078-X.

[24]

P. Maass, The X-ray transform: Singular value decomposition and resolution,, Inverse Problems, 3 (1987), 729. doi: 10.1088/0266-5611/3/4/016.

[25]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics,, McGraw-Hill, (1953).

[26]

F. Natterer, The Mathematics of Computerized Tomography,, John Wiley & Sons, (1986).

[27]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, SIAM, (2001). doi: 10.1137/1.9780898718324.

[28]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, NIST and Cambridge Univ. Press, (2010).

[29]

M. Rosier, Biorthogonal series expansions of the X-ray and $k$-plane transforms,, Inverse Problems, 11 (1995), 231. doi: 10.1088/0266-5611/11/1/014.

[30]

S. Stein, Addition theorem for spherical wave functions,, Quart. Appl. Math., 19 (1961), 15.

[31]

J. A. Stratton, Electromagnetic Theory,, McGrow-Hill, (1941). doi: 10.1002/9781119134640.

[32]

D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum,, World Scientific Publishing, (1988). doi: 10.1142/0270.

[33]

L. Wang and R. S. Granetz, Expansion method in three-dimensional tomography,, J. Opt. Soc. Am. A, 10 (1993), 2292. doi: 10.1364/JOSAA.10.002292.

[34]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Univ. Press, (1995).

[1]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[2]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[3]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[4]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[5]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[6]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[7]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[8]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[9]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[10]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[11]

Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499

[12]

Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279-292. doi: 10.3934/amc.2013.7.279

[13]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[14]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[15]

François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1259-1282. doi: 10.3934/dcds.2010.27.1259

[16]

Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2417-2423. doi: 10.3934/dcdsb.2014.19.2417

[17]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[18]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[19]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[20]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]