\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A globally convergent numerical method for a 1-d inverse medium problem with experimental data

Abstract / Introduction Related Papers Cited by
  • In this paper, a reconstruction method for the spatially distributed dielectric constant of a medium from the back scattering wave field in the frequency domain is considered. Our approach is to propose a globally convergent algorithm, which does not require any knowledge of a small neighborhood of the solution of the inverse problem in advance. The Quasi-Reversibility Method (QRM) is used in the algorithm. The convergence of the QRM is proved via a Carleman estimate. The method is tested on both computationally simulated and experimental data.
    Mathematics Subject Classification: 34L25, 35P25, 78A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012.doi: 10.1007/978-1-4419-7805-9.

    [2]

    L. Beilina and M. V. Klibanov, A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data, J. Inverse and Ill-Posed Problems, 20 (2012), 512-565.doi: 10.1515/jip-2012-0063.

    [3]

    L. Beilina, Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for the Maxwell's system in time domain, Central European Journal of Mathematics, 11 (2013), 702-733.doi: 10.2478/s11533-013-0202-3.

    [4]

    L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains, Applicable Analalysis, 89 (2010), 1745-1768.doi: 10.1080/00036810903393809.

    [5]

    L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inverse Problems, 26 (2010), 095016, 21pp.doi: 10.1088/0266-5611/26/9/095016.

    [6]

    L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system, Inverse Problems and Imaging, 8 (2014), 23-51.doi: 10.3934/ipi.2014.8.23.

    [7]

    H. T. Chuah, K. Y. Lee and T. W. Lau, Dielectric constants of rubber and oil palm leaf samples at X-band, IEEE Trans. on Geoscience and Remote Sensing, 33 (1995), 221-223.doi: 10.1109/36.368205.

    [8]

    S. I. Kabanikhin, On linear regularization of multidimensional inverse problems for hyperbolic equations, Soviet Mathematics Doklady, 40 (1990), 579-583.

    [9]

    S. I. Kabanikhin, A. D. Satybaev and M. A. Shishlenin, Direct Methods of Solving Inverse Hyperbolic Problems, VSP, Utrecht, 2005.

    [10]

    S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov and M. A. Shishlenin, Numerical solution of the multidimensional Gelfand-Levitan equation, J. Inverse and Ill-Posed Problems, 23 (2015), 439-450.doi: 10.1515/jiip-2014-0018.

    [11]

    A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan, The Krein method and the globally convergent method for experimental data, Applied Numerical Mathematics, 74 (2013), 111-127.doi: 10.1016/j.apnum.2013.09.003.

    [12]

    M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equation, SIAM J. Appl. Math, 51 (1991), 1653-1675.doi: 10.1137/0151085.

    [13]

    M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability for the hyperbolic Cauchy problem with time dependent data, Inverse Problems, 7 (1991), 577-596.doi: 10.1088/0266-5611/7/4/007.

    [14]

    M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, The Netherlands, 2004.doi: 10.1515/9783110915549.

    [15]

    M. V. Klibanov and N. T. Thành, Recovering dielectric constants of explosives via a globally strictly convex cost functional, SIAM J. Appl. Math, 75 (2015), 518-537.doi: 10.1137/140981198.

    [16]

    M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems, Applied Numerical Mathematics, 94 (2015), 46-74.doi: 10.1016/j.apnum.2015.02.003.

    [17]

    M. G. Krein, On a method of effective solution of an inverse boundary problem, Dokl. Akad. Nauk SSSR, 94 (1954), 987-990 (in Russian).

    [18]

    A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28 (2012), 095007.doi: 10.1088/0266-5611/28/9/095007.

    [19]

    A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method, IEEE Transaction for Geoscience and Remote Sensing, 51 (2013), 2937-2948.doi: 10.1109/TGRS.2012.2211885.

    [20]

    R. Lattes and J.-L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations, Elsevier, New York, 1969.

    [21]

    D. Lesnic, G. Wakefield, B. D. Sleeman and J. R. Okendon, Determination of the index of refraction of ant-reflection coatings, Mathematics-in-Industry Case Studies Journal, 2 (2010), 155-173.

    [22]

    B. M. Levitan, Inverse Sturm-Liouville Problems, VSP, Utrecht, 1987.

    [23]

    N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar, Proc. SPIE 6553 (2007), 65530H, 8pp.

    [24]

    V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, b.v., Utrecht, 1987.

    [25]

    C. Sanderson, Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments, Technical Report, NICTA, 2010.

    [26]

    J. A. Scales, M. L. Smith and T. L. Fischer, Global optimization methods for multimodal inverse problems, J. Computational Physics, 103 (1992), 258-268.

    [27]
    [28]

    N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method, SIAM Journal on Scientific Computing, 36 (2014), B273-B293.doi: 10.1137/130924962.

    [29]

    N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm, SIAM J. Imaging Sciences, 8 (2015), 757-786.doi: 10.1137/140972469.

    [30]

    A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Kluwer, London, 1995.doi: 10.1007/978-94-015-8480-7.

    [31]

    B. R. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial differential equations, Russian Math. Surveys, 21 (1966), 115-194.

    [32]

    B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Science Publishers, New York, 1989.

    [33]

    V. S. Vladimirov, Equations of Mathematical Physics, M. Dekker, New York, 1971.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return