February  2017, 11(1): 99-123. doi: 10.3934/ipi.2017006

On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan

Received  November 2015 Revised  August 2016 Published  January 2017

Fund Project: The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 25400155) and (B) (No. 26287020) of Japan Society for the Promotion of Science.

An inverse obstacle scattering problem for the wave governed by the Maxwell system in the time domain, in particular, over a finite time interval is considered. It is assumed that the electric field $\boldsymbol{E}$ and magnetic field $\boldsymbol{ H}$ which are solutions of the Maxwell system are generated only by a current density at the initial time located not far a way from an unknown obstacle. The obstacle is embedded in a medium like air which has constant electric permittivity $ε$ and magnetic permeability $μ$. It is assumed that the fields on the surface of the obstacle satisfy the Leontovich boundary condition $\boldsymbol{ ν}×\boldsymbol{H}-λ\,\boldsymbol{ ν}×(\boldsymbol{ E}×\boldsymbol{ ν})=\boldsymbol{ 0}$ with admittance $λ$ an unknown positive function and $\boldsymbol{ ν}$ the unit outward normal. The observation data are given by the electric field observed at the same place as the support of the current density over a finite time interval. It is shown that an indicator function computed from the electric fields corresponding two current densities enables us to know: the distance of the center of the common spherical support of the current densities to the obstacle; whether the value of the admittance $λ$ is greater or less than the special value $\sqrt{ε/μ}$.

Citation: Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006
References:
[1]

N. G. Alexopoulos and G. A. Tadler, Accuracy of the Leontovich boundary condition for continuous and discontinuous surface impedances, J. Appl. Phys., 46 (2008), 3326-3332.  doi: 10.1063/1.322058.  Google Scholar

[2]

C. A. Balanis, Antenna Theory, Analysis and Design 3$^{rd}$ edition, Wiley-Interscience, Hoboken, New Jersey, 2005. Google Scholar

[3]

E. B. Bykovskii, A solution of the mixed problem for the Maxwell's equations in the case of an ideal conducting boundary, Vestnik Leningrad Univ., 12 (1957), 50-66.   Google Scholar

[4]

M. Cheney and R. Borden, Fundamentals of Radar Imaging CBMS-NSF, Regional Conference Series in Applied Mathematics, 79, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory 3rd edn, New York, Springer, 2013.  Google Scholar

[6]

R. Courantt and D. Hilbert, Methoden der Mathematischen Physik Vol. 2, Berlin, Springer, 1937. Google Scholar

[7]

R. Dautray and J. -L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[8]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[9]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data Inverse Problems 28 (2012), 045010, 29pp. doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[10]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain Inverse Problems 31 (2015), 085011, 21pp. doi: 10.1088/0266-5611/31/8/085011.  Google Scholar

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain, Inverse Problems and Imaging, 10 (2016), 131-163.  doi: 10.3934/ipi.2016.10.131.  Google Scholar

[12]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. Marin, L. , Munteanu, L. , Chiroiu, V. ), 2,123-147, Editura Academiei, Bucharest, Romania, in press. Google Scholar

[13]

M. Ikehata, A remark on finding the coefficient of the dissipative boundary condition via the enclosure method in the time domain Math. Meth. Appl. Sci. 2016. doi: 10.1002/mma.4021.  Google Scholar

[14]

B. V. Kapitonov, On exponential decay as $t\longrightarrow∞$ of solutions of an exterior boundary value problem for the Maxwell system, Math. USSR Sbornik, 66 (1990), 475-498.  doi: 10.1070/SM1990v066n02ABEH001318.  Google Scholar

[15]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-harmononic Maxwell's Equations, Expansion-, Integral-, and Variational Methods Springer, 2015.  Google Scholar

[16]

S. G. Krein and I. M. Kulikov, The Maxwell-Leontovich operator, (Russian)Differentsial'nye Uravneniya, 5 (1969), 1275-1282; English transl. in Differential Equations, 5(1969), 937-943. Google Scholar

[17]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Zap. Nauchn. Sem. LOMI, 21(1971), 112-158; English transl. in J. Soviet Math., 1 (1973), 477-512.  Google Scholar

[18]

M. V. Urev, On the Maxwell system under impedance boundary conditions with memory, Siberian Math. J., 55 (2014), 548-563.  doi: 10.1134/S0037446614030161.  Google Scholar

[19]

K. Yosida, Functional Analysis Third Edtition, Springer, New York, 1971. Google Scholar

show all references

References:
[1]

N. G. Alexopoulos and G. A. Tadler, Accuracy of the Leontovich boundary condition for continuous and discontinuous surface impedances, J. Appl. Phys., 46 (2008), 3326-3332.  doi: 10.1063/1.322058.  Google Scholar

[2]

C. A. Balanis, Antenna Theory, Analysis and Design 3$^{rd}$ edition, Wiley-Interscience, Hoboken, New Jersey, 2005. Google Scholar

[3]

E. B. Bykovskii, A solution of the mixed problem for the Maxwell's equations in the case of an ideal conducting boundary, Vestnik Leningrad Univ., 12 (1957), 50-66.   Google Scholar

[4]

M. Cheney and R. Borden, Fundamentals of Radar Imaging CBMS-NSF, Regional Conference Series in Applied Mathematics, 79, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory 3rd edn, New York, Springer, 2013.  Google Scholar

[6]

R. Courantt and D. Hilbert, Methoden der Mathematischen Physik Vol. 2, Berlin, Springer, 1937. Google Scholar

[7]

R. Dautray and J. -L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[8]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[9]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data Inverse Problems 28 (2012), 045010, 29pp. doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[10]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain Inverse Problems 31 (2015), 085011, 21pp. doi: 10.1088/0266-5611/31/8/085011.  Google Scholar

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain, Inverse Problems and Imaging, 10 (2016), 131-163.  doi: 10.3934/ipi.2016.10.131.  Google Scholar

[12]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. Marin, L. , Munteanu, L. , Chiroiu, V. ), 2,123-147, Editura Academiei, Bucharest, Romania, in press. Google Scholar

[13]

M. Ikehata, A remark on finding the coefficient of the dissipative boundary condition via the enclosure method in the time domain Math. Meth. Appl. Sci. 2016. doi: 10.1002/mma.4021.  Google Scholar

[14]

B. V. Kapitonov, On exponential decay as $t\longrightarrow∞$ of solutions of an exterior boundary value problem for the Maxwell system, Math. USSR Sbornik, 66 (1990), 475-498.  doi: 10.1070/SM1990v066n02ABEH001318.  Google Scholar

[15]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-harmononic Maxwell's Equations, Expansion-, Integral-, and Variational Methods Springer, 2015.  Google Scholar

[16]

S. G. Krein and I. M. Kulikov, The Maxwell-Leontovich operator, (Russian)Differentsial'nye Uravneniya, 5 (1969), 1275-1282; English transl. in Differential Equations, 5(1969), 937-943. Google Scholar

[17]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Zap. Nauchn. Sem. LOMI, 21(1971), 112-158; English transl. in J. Soviet Math., 1 (1973), 477-512.  Google Scholar

[18]

M. V. Urev, On the Maxwell system under impedance boundary conditions with memory, Siberian Math. J., 55 (2014), 548-563.  doi: 10.1134/S0037446614030161.  Google Scholar

[19]

K. Yosida, Functional Analysis Third Edtition, Springer, New York, 1971. Google Scholar

[1]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[4]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[5]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044

[8]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[9]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021024

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[12]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[13]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[14]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[17]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[18]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (83)
  • HTML views (1083)
  • Cited by (2)

Other articles
by authors

[Back to Top]