• Previous Article
    Foveated compressive imaging for low power vehicle fingerprinting and tracking in aerial imagery
  • IPI Home
  • This Issue
  • Next Article
    Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation
February  2017, 11(1): 151-176. doi: 10.3934/ipi.2017008

Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media

Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany

Received  December 2015 Revised  September 2016 Published  January 2017

Fund Project: The authors are supported by German Research Foundation (DFG) grant Le 2499/2-1.

We consider Tikhonov and sparsity-promoting regularization in Banach spaces for inverse scattering from penetrable anisotropic media. To this end, we equip an admissible set of material parameters with the $L^p$-topology and use Meyers' gradient estimate for solutions of elliptic equations to analyze the dependence of scattered fields and their Fréchet derivatives on the material parameter. This allows to show convergence of a non-linear Tikhonov regularization against a minimum-norm solution to the inverse problem, but also to set up sparsity-promoting versions of that regularization method. For both approaches, the discrepancy is defined via a $q$-Schatten norm or an $L^q$-norm with $1 < q < ∞$. Numerical reconstruction examples indicate the reconstruction quality of the method, as well as the qualitative dependence of the reconstructions on $q$.

Citation: Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008
References:
[1]

L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966), 1-3.  doi: 10.2140/pjm.1966.16.1.  Google Scholar

[2]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[3] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer, 2013.  doi: 10.1007/978-1-4614-4942-3.  Google Scholar
[4]

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41 (1988), 909-996.  doi: 10.1002/cpa.3160410705.  Google Scholar

[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.  doi: 10.1137/1.9781611970104.fm.  Google Scholar
[6]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[7]

B. Gramsch, Zum Einbettungssatz von Rellich bei Sobolevräumen, Math. Zeitschrift, 106 (1968), 81-87.  doi: 10.1007/BF01110715.  Google Scholar

[8]

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires Mem. Amer. Math. Soc. 1955 (1955), 140pp. doi: 10.1090/memo/0016.  Google Scholar

[9]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, Journal of Computational and Applied Mathematics, 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.  Google Scholar

[10]

T. Hohage and C. Homann, A generalization of the Chambolle-Pock algorithm to Banach spaces with applications to inverse problems, preprint, arXiv: 1412.0126. Google Scholar

[11]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 1027-1048.  doi: 10.1051/cocv/2011193.  Google Scholar

[12]

A. Kirsch, An integral equation for the scattering problem for an anisotropic medium and the factorization method, in Advanced Topics in Scattering and Biomedical Engineering, 2008, 57-70. doi: 10.1142/9789812814852_0007.  Google Scholar

[13]

A. Lechleiter, K. S. Kazimierski and M. Karamehmedović, Tikhonov regularization in Lp applied to inverse medium scattering Inverse Problems 29 (2013), 075003, 19pp. doi: 10.1088/0266-5611/29/7/075003.  Google Scholar

[14]

A. Lechleiter and D.-L. Nguyen, A trigonometric galerkin method for volume integral equations arising in TM grating scattering, Adv. Compt. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.  Google Scholar

[15] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.  doi: 10.1017/S0013091501244435.  Google Scholar
[16]

N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[17] J. -C. Nédélec, Acoustic and Electromagnetic Equations, Springer, New York etc, 2001.  doi: 10.1007/978-1-4757-4393-7.  Google Scholar
[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NY, 1997.   Google Scholar
[19]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging vol. 167 of Applied Mathematical Sciences, Springer, 2009. doi: 10.1007/978-0-387-69277-7.  Google Scholar

[20]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces vol. 10 of Radon Series on Computational and Applied Mathematics, De Gruyter, 2012.  Google Scholar

[21]

H. Triebel, Theory of Function Spaces Ⅲ Monographs in mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2006. doi: 10.1007/3-7643-7582-5.  Google Scholar

[22]

G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics (eds. R. P. Gilbert, J. Kajiwara and Y. S. Xu), vol. 5 of International Society for Analysis, Applications and Computation, Springer US, 2000,423-440. doi: 10.1002/cpa.3160410705.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅰ Fixed-Point Theorems, Springer, 1986.   Google Scholar

show all references

References:
[1]

L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966), 1-3.  doi: 10.2140/pjm.1966.16.1.  Google Scholar

[2]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[3] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer, 2013.  doi: 10.1007/978-1-4614-4942-3.  Google Scholar
[4]

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41 (1988), 909-996.  doi: 10.1002/cpa.3160410705.  Google Scholar

[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.  doi: 10.1137/1.9781611970104.fm.  Google Scholar
[6]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[7]

B. Gramsch, Zum Einbettungssatz von Rellich bei Sobolevräumen, Math. Zeitschrift, 106 (1968), 81-87.  doi: 10.1007/BF01110715.  Google Scholar

[8]

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires Mem. Amer. Math. Soc. 1955 (1955), 140pp. doi: 10.1090/memo/0016.  Google Scholar

[9]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, Journal of Computational and Applied Mathematics, 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.  Google Scholar

[10]

T. Hohage and C. Homann, A generalization of the Chambolle-Pock algorithm to Banach spaces with applications to inverse problems, preprint, arXiv: 1412.0126. Google Scholar

[11]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 1027-1048.  doi: 10.1051/cocv/2011193.  Google Scholar

[12]

A. Kirsch, An integral equation for the scattering problem for an anisotropic medium and the factorization method, in Advanced Topics in Scattering and Biomedical Engineering, 2008, 57-70. doi: 10.1142/9789812814852_0007.  Google Scholar

[13]

A. Lechleiter, K. S. Kazimierski and M. Karamehmedović, Tikhonov regularization in Lp applied to inverse medium scattering Inverse Problems 29 (2013), 075003, 19pp. doi: 10.1088/0266-5611/29/7/075003.  Google Scholar

[14]

A. Lechleiter and D.-L. Nguyen, A trigonometric galerkin method for volume integral equations arising in TM grating scattering, Adv. Compt. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.  Google Scholar

[15] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.  doi: 10.1017/S0013091501244435.  Google Scholar
[16]

N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[17] J. -C. Nédélec, Acoustic and Electromagnetic Equations, Springer, New York etc, 2001.  doi: 10.1007/978-1-4757-4393-7.  Google Scholar
[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NY, 1997.   Google Scholar
[19]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging vol. 167 of Applied Mathematical Sciences, Springer, 2009. doi: 10.1007/978-0-387-69277-7.  Google Scholar

[20]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces vol. 10 of Radon Series on Computational and Applied Mathematics, De Gruyter, 2012.  Google Scholar

[21]

H. Triebel, Theory of Function Spaces Ⅲ Monographs in mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2006. doi: 10.1007/3-7643-7582-5.  Google Scholar

[22]

G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics (eds. R. P. Gilbert, J. Kajiwara and Y. S. Xu), vol. 5 of International Society for Analysis, Applications and Computation, Springer US, 2000,423-440. doi: 10.1002/cpa.3160410705.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅰ Fixed-Point Theorems, Springer, 1986.   Google Scholar
Figure 1.  Contrasts plotted in $[-0.4,0.4)^2$. (a) Real part of $q^{\mathrm{sc}\;(1)}$ (b) Imaginary part of $q^{\mathrm{sc}\;(1)}$ (c) Real-valued contrast $q^{\mathrm{sc}\;(2)}$
Figure 2.  Reconstructions of $q^{\mathrm{sc}\;(1)}$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 500 iter., 2145 min., rel. error=0.533 (b/e) $\varepsilon=0.05$, 300 iter., 748 min., rel. error=0.565 (c/f) $\varepsilon=0.1$, 57 iter., 126 min., rel. error=0.677.
Figure 3.  Reconstructions of $q^{\mathrm{sc}\;(2)}$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 200 iter., 390 min., rel. error=0.653 (b/e) $\varepsilon=0.05$, 48 iter., 87 min., rel. error=0.665 (c/f) $\varepsilon=0.1$, 20 iter., 38 min., rel. error=0.703.
Figure 4.  Reconstructions of $q^{\mathrm{sc}\;(2)}$ rotated by $25^\circ$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 300 iter., rel. error=0.668 (b/e) $\varepsilon=0.05$, 445 iter., rel. error=0.669 (c/f) $\varepsilon=0.1$, 99 iter., rel. error=0.734.
Figure 5.  Real part of reconstructions of $q^{\mathrm{sc}\;(2)}$ by primal-dual algorithm for different discrepancy norms $\| \cdot \|_q^q/q$ (see Remark 7) and fixed artificial noise level $\varepsilon=0.01$, plotted on $[-0.4,0.4)^2$. (a) $q=2$, 5 iter., 12 min., rel. error=0.658 (b) $q=3$, 2 iter., 4 min., rel. error=0.738 (c) $q=1.6$, 41 iter., 82 min., rel. error=0.763.
[1]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[4]

Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[9]

De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023

[10]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[11]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[12]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[13]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[14]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[15]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[16]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[17]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[18]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[19]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[20]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (78)
  • HTML views (123)
  • Cited by (4)

Other articles
by authors

[Back to Top]