August 2017, 11(4): 745-759. doi: 10.3934/ipi.2017035

Increasing stability for the inverse source scattering problem with multi-frequencies

1. 

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

2. 

KLAS, School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China

* Corresponding author: Ganghua Yuan

Received  July 2016 Revised  March 2017 Published  June 2017

Fund Project: The research of PL was supported in part by the NSF grant DMS-1151308. The research of GY was supported in part by NSFC grants 10801030,11671072,11571064, the Ying Dong Fok Education Foundation under grant 141001, and the Fundamental Research Funds for the Central Universities under grant 2412015BJ011

Consider the scattering of the two-or three-dimensional Helmholtz equation where the source of the electric current density is assumed to be compactly supported in a ball. This paper concerns the stability analysis of the inverse source scattering problem which is to reconstruct the source function. Our results show that increasing stability can be obtained for the inverse problem by using only the Dirichlet boundary data with multi-frequencies.

Citation: Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035
References:
[1]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.

[2]

C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.

[3]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[4]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[5]

G. BaoJ. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60. doi: 10.1090/conm/548/10835.

[6]

G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628. doi: 10.1137/140993648.

[7]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[8]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902.

[9]

M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[10]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010.

[11]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1990. doi: 10.1090/surv/034.

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2006.

[13]

V. Isakov, Increasing stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267. doi: 10.1090/conm/426/08192.

[14]

V. Isakov, Increasing stability for the Schödinger potential from the Dirichlet-to-Neumann map, DCDS-S, 4 (2011), 631-640. doi: 10.3934/dcdss.2011.4.631.

[15]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074.

[16]

P. Stefanov and G. Uhlmann, Themoacoustic tomography arising in brain imaging Inverse Problems, 27 (2011), 075011, 26pp. doi: 10.1088/0266-5611/27/4/045004.

[17]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.

show all references

References:
[1]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.

[2]

C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.

[3]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[4]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[5]

G. BaoJ. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60. doi: 10.1090/conm/548/10835.

[6]

G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628. doi: 10.1137/140993648.

[7]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[8]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902.

[9]

M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[10]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010.

[11]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1990. doi: 10.1090/surv/034.

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2006.

[13]

V. Isakov, Increasing stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267. doi: 10.1090/conm/426/08192.

[14]

V. Isakov, Increasing stability for the Schödinger potential from the Dirichlet-to-Neumann map, DCDS-S, 4 (2011), 631-640. doi: 10.3934/dcdss.2011.4.631.

[15]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074.

[16]

P. Stefanov and G. Uhlmann, Themoacoustic tomography arising in brain imaging Inverse Problems, 27 (2011), 075011, 26pp. doi: 10.1088/0266-5611/27/4/045004.

[17]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.

Figure 1.  Problem geometry of the inverse source scattering problem
[1]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[2]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[3]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[4]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[5]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[6]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[7]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[8]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[9]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[10]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[11]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018099

[12]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[13]

Claudio Muñoz. The Gardner equation and the stability of multi-kink solutions of the mKdV equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3811-3843. doi: 10.3934/dcds.2016.36.3811

[14]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[15]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[16]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[17]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[18]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[19]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[20]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (8)
  • HTML views (17)
  • Cited by (5)

Other articles
by authors

[Back to Top]