January 2018, 12(1): 29-57. doi: 10.3934/ipi.2018002

ROI reconstruction from truncated cone-beam projections

1. 

Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

2. 

Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA

3. 

Matematicas, Instituto Tecnologico Autonomo de México, 01080 Ciudad de México, CDMX, México

* Corresponding author

Received  November 2016 Revised  September 2017 Published  December 2017

Region-of-Interest (ROI) tomography aims at reconstructing a region of interest $C$ inside a body using only x-ray projections intersecting $C$ and it is useful to reduce overall radiation exposure when only a small specific region of a body needs to be examined. We consider x-ray acquisition from sources located on a smooth curve $Γ$ in $\mathbb R^3$ verifying the classical Tuy condition. In this generic situation, the non-trucated cone-beam transform of smooth density functions $f$ admits an explicit inverse $Z$ as originally shown by Grangeat. However $Z$ cannot directly reconstruct $f$ from ROI-truncated projections. To deal with the ROI tomography problem, we introduce a novel reconstruction approach. For densities $f$ in $L^{∞}(B)$ where $B$ is a bounded ball in $\mathbb R^3$, our method iterates an operator $U$ combining ROI-truncated projections, inversion by the operator $Z$ and appropriate regularization operators. Assuming only knowledge of projections corresponding to a spherical ROI $C \subset B$, given $ε >0$, we prove that if $C$ is sufficiently large our iterative reconstruction algorithm converges at exponential speed to an $ε$-accurate approximation of $f$ in $L^{∞}$. The accuracy depends on the regularity of $f$ quantified by its Sobolev norm in $W^5(B)$. Our result guarantees the existence of a critical ROI radius ensuring the convergence of our ROI reconstruction algorithm to an $ε$-accurate approximation of $f$. We have numerically verified these theoretical results using simulated acquisition of ROI-truncated cone-beam projection data for multiple acquisition geometries. Numerical experiments indicate that the critical ROI radius is fairly small with respect to the support region $B$.

Citation: Robert Azencott, Bernhard G. Bodmann, Tasadduk Chowdhury, Demetrio Labate, Anando Sen, Daniel Vera. ROI reconstruction from truncated cone-beam projections. Inverse Problems & Imaging, 2018, 12 (1) : 29-57. doi: 10.3934/ipi.2018002
References:
[1]

R. Alaifari, M. Defrise and A. Katsevich, Stability estimates for the regularized inversion of the truncated Hilbert transform, Inverse Problems, 32 (2016), 065005, 17 pp, arXiv: 1507.01141.

[2]

T. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampére Equations, Grundlehren der mathematischen Wissenschaften, Springer, New York, 1982.

[3]

R. Clackdoyle and F. Noo, A large class of inversion formulae for the 2-d Radon transform of functions of compact support, Inverse Problems, 20 (2004), 1281-1291.

[4]

M. Defrise and R. Clack, A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection, Medical Imaging, IEEE Transactions on, 13 (1994), 186-195.

[5]

M. DefriseF. NooR. Clackdoyle and H. Kudo, Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Problems, 22 (2006), 1037-1053.

[6]

L. FeldkampL. Davis and J. Kress, Practical cone-beam algorithm, JOSA A, 1 (1984), 612-619.

[7]

P. Grangeat, Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform, in Mathematical Methods in Tomography (eds. G. Herman, K. Louis and F. Natterer), Lecture Notes in Mathematics, Springer Verlag, Berlin, 1497 (1991), 66-97.

[8]

W. HanH. Yu and G. Wang, A general total variation minimization theorem for compressed sensing based interior tomography, Journal of Biomedical Imaging, 2009 (2009), 1-3.

[9]

S. Helgason, The Radon transform on ${R}^n$, in Integral Geometry and Radon Transforms, Springer, New York, 2011, 1-62.

[10]

W. HudaW. Randazzo and S. Tipnis, Embryo dose estimates in body CT, AJR Am. J. Roentgenol, 194 (2010), 874-880.

[11]

C. Kamphuis and F. Beekman, Accelerated iterative transmission ct reconstruction using an ordered subsets convex algorithm, Medical Imaging, IEEE Transactions on, 17 (1998), 1101-1105.

[12]

A. Katsevich, Theoretically exact filtered backprojection-type inversion algorithm for spiral CT, SIAM Journal on Applied Mathematics, 62 (2002), 2012-2026.

[13]

A. Katsevich, A general scheme for constructing inversion algorithms for cone beam CT, International Journal of Mathematics and Mathematical Sciences, 2003 (2003), 1305-1321.

[14]

A. Katsevich, An improved exact filtered backprojection algorithm for spiral computed tomography, Advances in Applied Mathematics, 32 (2004), 681-697.

[15]

A. Katsevich, Stability estimates for helical computer tomography, Journal of Fourier Analysis and Applications, 11 (2005), 85-105.

[16]

E. Katsevich, A. Katsevich and G. Wang, Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Problems, 28(2012), 065022, 28pp.

[17]

J. KimK. Y. KwakS.-B. Park and Z. H. Cho, Projection space iteration reconstruction-reprojection, Medical Imaging, IEEE Transactions on, 4 (1985), 139-143.

[18]

E. Klann, E. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography, Inverse Problems, 31(2015), 025001, 22pp.

[19]

H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology, 53(2008), 2207.

[20]

C. I. LeeA. H. Haims and E. P. Monico, Diagnostic CT scans: Assessment of patient, physician, and radiologist awareness of radiation dose and possible risks, Radiology, 231 (2004), 393-398.

[21]

S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edition, Academic Press, 2008.

[22]

M. NassiW. R. BrodyB. P. Medoff and A. Macovski, Iterative reconstruction-reprojection: An algorithm for limited data cardiac-computed tomography, Biomedical Engineering, IEEE Transactions on, 29 (1982), 333-341.

[23]

F. Natterer, The Mathematics of Computerized Tomography, SIAM: Society for Industrial and Applied Mathematics, 2001.

[24]

F. Natterer and F. Wubbeling, Mathematical Methods in Image Reconstruction, SIAM: Society for Industrial and Applied Mathematics, 2001.

[25]

F. NooM. DefriseR. Clackdoyle and H. Kudo, Image reconstruction from fan-beam projections on less than a short scan, Physics in Medicine and Biology, 47 (2002), 2525-2546.

[26]

A. Sen, Searchlight {CT}: A New Regularized Reconstruction Method for Highly Collimated X-ray Tomography, Ph. D. thesis, University of Houston, 2012.

[27]

H. Tuy, An inversion formula for cone-beam reconstruction, SIAM Journal on Applied Mathematics, 43 (1983), 546-552.

[28]

G. Wang and H. Yu, The meaning of interior tomography, Physics in Medicine and Biology, 58 (2013), 161-186.

[29]

G. YanJ. TianS. ZhuC. QinY. DaiF. YangD. Dong and P. Wu, Fast Katsevich algorithm based on GPU for helical cone-beam computed tomography, Information Technology in Biomedicine, IEEE Transactions on, 14 (2010), 1053-1061.

[30]

J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography, Inverse Problems, 26(2010), 035013, 29pp.

[31]

Y. Ye, H. Yu and G. Wang, Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, 2007(2007), Article ID 10693, 5 pages. doi: 10.1155/2007/10693.

[32]

Y. Ye, H. Yu, Y. Wei and G. Wang, A general local reconstruction approach based on a truncated Hilbert transform, International Journal of Biomedical Imaging, 2007(2007), Article ID 63634, 8 pages. doi: 10.1155/2007/63634.

[33]

H. Yu and G. Wang, Studies on implementation of the Katsevich algorithm for spiral cone-beam CT, Journal of X-Ray Science and Technology, 12 (2004), 97-116.

[34]

H. Yu and G. Wang, Compressed sensing based interior tomography, Physics in Medicine and Biology, 54 (2009), 2791-2805.

[35]

G. L. Zeng, R. Clack and G. T. Gullberg, Implementation of Tuy's cone-beam inversion formula, Physics in Medicine and Biology, 39 (1994), p493. doi: 10.1088/0031-9155/39/3/014.

[36]

S. ZhaoH. Yu and G. Wang, A unified framework for exact cone-beam reconstruction formulas, Medical Physics, 32 (2005), 1712-1721. doi: 10.1118/1.1869632.

[37]

A. Ziegler, T. Nielsen and M. Grass, Iterative reconstruction of a region of interest for transmission tomography, Medical Imaging 2006: Physics of Medical Imaging, 6142 (2006), 614223. doi: 10.1117/12.650666.

show all references

References:
[1]

R. Alaifari, M. Defrise and A. Katsevich, Stability estimates for the regularized inversion of the truncated Hilbert transform, Inverse Problems, 32 (2016), 065005, 17 pp, arXiv: 1507.01141.

[2]

T. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampére Equations, Grundlehren der mathematischen Wissenschaften, Springer, New York, 1982.

[3]

R. Clackdoyle and F. Noo, A large class of inversion formulae for the 2-d Radon transform of functions of compact support, Inverse Problems, 20 (2004), 1281-1291.

[4]

M. Defrise and R. Clack, A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection, Medical Imaging, IEEE Transactions on, 13 (1994), 186-195.

[5]

M. DefriseF. NooR. Clackdoyle and H. Kudo, Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Problems, 22 (2006), 1037-1053.

[6]

L. FeldkampL. Davis and J. Kress, Practical cone-beam algorithm, JOSA A, 1 (1984), 612-619.

[7]

P. Grangeat, Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform, in Mathematical Methods in Tomography (eds. G. Herman, K. Louis and F. Natterer), Lecture Notes in Mathematics, Springer Verlag, Berlin, 1497 (1991), 66-97.

[8]

W. HanH. Yu and G. Wang, A general total variation minimization theorem for compressed sensing based interior tomography, Journal of Biomedical Imaging, 2009 (2009), 1-3.

[9]

S. Helgason, The Radon transform on ${R}^n$, in Integral Geometry and Radon Transforms, Springer, New York, 2011, 1-62.

[10]

W. HudaW. Randazzo and S. Tipnis, Embryo dose estimates in body CT, AJR Am. J. Roentgenol, 194 (2010), 874-880.

[11]

C. Kamphuis and F. Beekman, Accelerated iterative transmission ct reconstruction using an ordered subsets convex algorithm, Medical Imaging, IEEE Transactions on, 17 (1998), 1101-1105.

[12]

A. Katsevich, Theoretically exact filtered backprojection-type inversion algorithm for spiral CT, SIAM Journal on Applied Mathematics, 62 (2002), 2012-2026.

[13]

A. Katsevich, A general scheme for constructing inversion algorithms for cone beam CT, International Journal of Mathematics and Mathematical Sciences, 2003 (2003), 1305-1321.

[14]

A. Katsevich, An improved exact filtered backprojection algorithm for spiral computed tomography, Advances in Applied Mathematics, 32 (2004), 681-697.

[15]

A. Katsevich, Stability estimates for helical computer tomography, Journal of Fourier Analysis and Applications, 11 (2005), 85-105.

[16]

E. Katsevich, A. Katsevich and G. Wang, Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Problems, 28(2012), 065022, 28pp.

[17]

J. KimK. Y. KwakS.-B. Park and Z. H. Cho, Projection space iteration reconstruction-reprojection, Medical Imaging, IEEE Transactions on, 4 (1985), 139-143.

[18]

E. Klann, E. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography, Inverse Problems, 31(2015), 025001, 22pp.

[19]

H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology, 53(2008), 2207.

[20]

C. I. LeeA. H. Haims and E. P. Monico, Diagnostic CT scans: Assessment of patient, physician, and radiologist awareness of radiation dose and possible risks, Radiology, 231 (2004), 393-398.

[21]

S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edition, Academic Press, 2008.

[22]

M. NassiW. R. BrodyB. P. Medoff and A. Macovski, Iterative reconstruction-reprojection: An algorithm for limited data cardiac-computed tomography, Biomedical Engineering, IEEE Transactions on, 29 (1982), 333-341.

[23]

F. Natterer, The Mathematics of Computerized Tomography, SIAM: Society for Industrial and Applied Mathematics, 2001.

[24]

F. Natterer and F. Wubbeling, Mathematical Methods in Image Reconstruction, SIAM: Society for Industrial and Applied Mathematics, 2001.

[25]

F. NooM. DefriseR. Clackdoyle and H. Kudo, Image reconstruction from fan-beam projections on less than a short scan, Physics in Medicine and Biology, 47 (2002), 2525-2546.

[26]

A. Sen, Searchlight {CT}: A New Regularized Reconstruction Method for Highly Collimated X-ray Tomography, Ph. D. thesis, University of Houston, 2012.

[27]

H. Tuy, An inversion formula for cone-beam reconstruction, SIAM Journal on Applied Mathematics, 43 (1983), 546-552.

[28]

G. Wang and H. Yu, The meaning of interior tomography, Physics in Medicine and Biology, 58 (2013), 161-186.

[29]

G. YanJ. TianS. ZhuC. QinY. DaiF. YangD. Dong and P. Wu, Fast Katsevich algorithm based on GPU for helical cone-beam computed tomography, Information Technology in Biomedicine, IEEE Transactions on, 14 (2010), 1053-1061.

[30]

J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography, Inverse Problems, 26(2010), 035013, 29pp.

[31]

Y. Ye, H. Yu and G. Wang, Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, 2007(2007), Article ID 10693, 5 pages. doi: 10.1155/2007/10693.

[32]

Y. Ye, H. Yu, Y. Wei and G. Wang, A general local reconstruction approach based on a truncated Hilbert transform, International Journal of Biomedical Imaging, 2007(2007), Article ID 63634, 8 pages. doi: 10.1155/2007/63634.

[33]

H. Yu and G. Wang, Studies on implementation of the Katsevich algorithm for spiral cone-beam CT, Journal of X-Ray Science and Technology, 12 (2004), 97-116.

[34]

H. Yu and G. Wang, Compressed sensing based interior tomography, Physics in Medicine and Biology, 54 (2009), 2791-2805.

[35]

G. L. Zeng, R. Clack and G. T. Gullberg, Implementation of Tuy's cone-beam inversion formula, Physics in Medicine and Biology, 39 (1994), p493. doi: 10.1088/0031-9155/39/3/014.

[36]

S. ZhaoH. Yu and G. Wang, A unified framework for exact cone-beam reconstruction formulas, Medical Physics, 32 (2005), 1712-1721. doi: 10.1118/1.1869632.

[37]

A. Ziegler, T. Nielsen and M. Grass, Iterative reconstruction of a region of interest for transmission tomography, Medical Imaging 2006: Physics of Medical Imaging, 6142 (2006), 614223. doi: 10.1117/12.650666.

Figure 1.  ROI-truncated cone-beam acquisition: projections are restricted to half-rays intersecting the ROI, which is a ball $C$ included in the target ball $B$
Figure 2.  Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom using simulated Twin Circles acquisition and truncation of projection data. ROI radius =45 voxels. Middles sections are shown from the $xy$, $yz$ and $xz$ planes. From left to right: inversion by one-step Grangeat formula; our iterative ROI reconstruction; ground truth. The last column shows intensity profiles corresponding to the middle row of the images. Green: one-step Grangeat formula; blue: our algorithm; red: ground truth
Figure 3.  Visual comparison of ROI reconstruction for Mouse Tissue data using simulated Twin Circles acquisition and truncation of projection data. ROI radius =45 voxels. Middles sections are shown from the $xy$, $yz$ and $xz$ planes. From left to right: inversion by one-step Grangeat's formula; our iterative ROI reconstruction; ground truth. The last column shows intensity profiles corresponding to the middle row of the images. Green: one-step Grangeat formula; blue: our algorithm; red: ground truth
Figure 4.  Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom and mouse tissue using simulated spiral acquisition and truncation of projection data. A representative horizontal section from the 3D reconstructed volume is shown. From left to right: inversion by one-step Katsevich formula; our iterative ROI reconstruction; ground truth
Figure 5.  Visual comparison of ROI reconstruction for 3D Shepp-Logan phantom and mouse tissue using simulated C-arm acquisition and truncation of projection data. A representative horizontal section from the 3D reconstructed volume is shown. From left to right: inversion by one-step FDK algorithm; our iterative ROI reconstruction; ground truth
Table 1.  Relative $L^1$ error of ROI reconstruction
Density data ROI radiusSources locations
SphericalSpiralCircleTwin circles
Shepp-Logan45 vox10.3%10.9%13.2%14.8%
60 vox8.6%9.1%11.6%14.7%
75 vox7.6%8.3%7.4%8.9%
90 vox7.3%8.0%4.4%4.8%
Mouse tissue45 vox10.8%11.4%11.6%12.5%
60 vox8.8%9.7%11.1%9.4%
75 vox7.9%8.8%8.4%8.3%
90 vox7.5%8.4%7.1%7.8%
Human jaw45 vox11.4%11.9%12.9%15.0%
60 vox9.6%10.8%12.8%13.3%
75 vox9.0%9.7%10.2%10.2%
90 vox8.2%8.5%9.8%9.8%
Density data ROI radiusSources locations
SphericalSpiralCircleTwin circles
Shepp-Logan45 vox10.3%10.9%13.2%14.8%
60 vox8.6%9.1%11.6%14.7%
75 vox7.6%8.3%7.4%8.9%
90 vox7.3%8.0%4.4%4.8%
Mouse tissue45 vox10.8%11.4%11.6%12.5%
60 vox8.8%9.7%11.1%9.4%
75 vox7.9%8.8%8.4%8.3%
90 vox7.5%8.4%7.1%7.8%
Human jaw45 vox11.4%11.9%12.9%15.0%
60 vox9.6%10.8%12.8%13.3%
75 vox9.0%9.7%10.2%10.2%
90 vox8.2%8.5%9.8%9.8%
Table 2.  Critical radius of convergence (voxels)
Density dataSource locations
SphericalSpiralCircleTwin circles
Shepp-Logan52 vox56 vox67 vox73 vox
Mouse tissue52 vox57 vox66 vox49 vox
Human jaw57 vox70 vox82 vox82 vox
Density dataSource locations
SphericalSpiralCircleTwin circles
Shepp-Logan52 vox56 vox67 vox73 vox
Mouse tissue52 vox57 vox66 vox49 vox
Human jaw57 vox70 vox82 vox82 vox
[1]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[2]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[3]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[4]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[5]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[6]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[7]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[8]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[9]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[10]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[11]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[12]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[13]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[14]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[15]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[16]

Mathieu Lutz. Application of Lie transform techniques for simulation of a charged particle beam. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 185-221. doi: 10.3934/dcdss.2015.8.185

[17]

Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems & Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885

[18]

Gaik Ambartsoumian, Leonid Kunyansky. Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Problems & Imaging, 2014, 8 (2) : 339-359. doi: 10.3934/ipi.2014.8.339

[19]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[20]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (53)
  • HTML views (310)
  • Cited by (1)

[Back to Top]