# American Institute of Mathematical Sciences

April  2019, 13(2): 377-400. doi: 10.3934/ipi.2019019

## An inverse obstacle problem for the wave equation in a finite time domain

 1 Laboratoire POEMS, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France 2 Université Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, GF-31062 Toulouse Cedex 9, France

Received  June 2018 Revised  September 2018 Published  January 2019

We consider an inverse obstacle problem for the acoustic transient wave equation. More precisely, we wish to reconstruct an obstacle characterized by a Dirichlet boundary condition from lateral Cauchy data given on a subpart of the boundary of the domain and over a finite interval of time. We first give a proof of uniqueness for that problem and then propose an "exterior approach" based on a mixed formulation of quasi-reversibility and a level set method in order to actually solve the problem. Some 2D numerical experiments are provided to show that our approach is effective.

Citation: Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019
##### References:

show all references

##### References:
Notations
Illustration of the non-monotonicity of the mapping $O \mapsto D(\Omega,\Gamma)$
Radial case. Discrepancy $|u_ \varepsilon -u|$ as a function of $|x|$, for $t = 2.5$, $t = 3$, $t = 3.5$, $t = 4$ and $t = 4.5$
Two discs. Left: function $u_ \varepsilon$. Right: function $|u_ \varepsilon -u|$
Validation of the level set method ($T = 25$)
Two discs and exact data. Top left: $T = 10$. Top right: $T = 15$. Bottom: $T = 25$
Two discs and noisy data. Top left: $\delta = 0$ (exact data). Top right: $\delta = 0.02$. Bottom: $\delta = 0.05$
Partial (exact) data and one disc. Left: obstacle located far away from $\partial G \setminus \overline{\Gamma}$. Right: obstacle located close to $\partial G \setminus \overline{\Gamma}$
Boomerang obstacle. Left: $\delta = 0$ (exact data). Right: $\delta = 0.02$
 [1] Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351 [2] Jérémi Dardé. Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Problems & Imaging, 2016, 10 (2) : 379-407. doi: 10.3934/ipi.2016005 [3] Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971 [4] Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 [5] Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 [6] Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 [7] Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 [8] Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 [9] Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 [10] Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479 [11] Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic & Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417 [12] Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131 [13] Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77 [14] Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 [15] Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 [16] Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027 [17] Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063 [18] V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731 [19] Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012 [20] Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

2018 Impact Factor: 1.469