June 2019, 13(3): 449-460. doi: 10.3934/ipi.2019022

CT image reconstruction on a low dimensional manifold

1. 

Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

2. 

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

3. 

GE Healthcare Technologies, Waukesha, WI 53188, USA

4. 

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

* Corresponding authors: Rongjie Lai

Received  January 2018 Revised  January 2019 Published  March 2019

Fund Project: W. Cong, G. Wang and Q. Yang's work is partially supported by the National Institutes of Health Grant NIH/NIBIB R01 EB016977 and U01 EB017140. R. Lai's work is partially supported by the National Science Foundation NSF DMS-1522645 and an NSF CAREER Award DMS-1752934

The patch manifold of a natural image has a low dimensional structure and accommodates rich structural information. Inspired by the recent work of the low-dimensional manifold model (LDMM), we apply the LDMM for regularizing X-ray computed tomography (CT) image reconstruction. This proposed method recovers detailed structural information of images, significantly enhancing spatial and contrast resolution of CT images. Both numerically simulated data and clinically experimental data are used to evaluate the proposed method. The comparative studies are also performed over the simultaneous algebraic reconstruction technique (SART) incorporated the total variation (TV) regularization to demonstrate the merits of the proposed method. Results indicate that the LDMM-based method enables a more accurate image reconstruction with high fidelity and contrast resolution.

Citation: Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022
References:
[1]

T. BroxO. Kleinschmidt and D. Cremers, Efficient nonlocal means for denoising of textural patterns, IEEE Transactions on Image Processing, 17 (2008), 1083-1092. doi: 10.1109/TIP.2008.924281.

[2]

A. Buades, B. Coll and J.-M. Morel, A non-local algorithm for image denoising, In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 60–65. IEEE, 2005.

[3]

E. J. CandèsJ. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509. doi: 10.1109/TIT.2005.862083.

[4]

E. J. CandesJ. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 59 (2006), 1207-1223. doi: 10.1002/cpa.20124.

[5]

G.-H. ChenJ. Tang and S. Leng, Prior image constrained compressed sensing (piccs): a method to accurately reconstruct dynamic ct images from highly undersampled projection data sets, Medical Physics, 35 (2008), 660-663. doi: 10.1118/1.2836423.

[6]

I. A. Elbakri and J. A. Fessler, Statistical image reconstruction for polyenergetic x-ray computed tomography, IEEE Transactions on Medical Imaging, 21 (2002), 89-99. doi: 10.1109/42.993128.

[7]

H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy ct based on a prior rank, intensity and sparsity model (prism), Inverse Problems, 27 (2011), 115012, 22pp. doi: 10.1088/0266-5611/27/11/115012.

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7 (2008), 1005-1028. doi: 10.1137/070698592.

[9]

S. Ha and K. Mueller, Low dose ct image restoration using a database of image patches, Physics in Medicine & Biology, 60 (2015), 869-882. doi: 10.1088/0031-9155/60/2/869.

[10]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE press New York, 1988.

[11]

Z. LiZ. Shi and J. Sun, Point integral method for solving poisson-type equations on manifolds from point clouds with convergence guarantees, Communications in Computational Physics, 22 (2017), 228-258. doi: 10.4208/cicp.111015.250716a.

[12]

B. De ManJ. NuytsP. DupontG. Marchal and P. Suetens, An iterative maximum-likelihood polychromatic algorithm for ct, IEEE Transactions on Medical Imaging, 20 (2001), 999-1008.

[13]

B. De Man, S. Basu, N. Chandra, B. Dunham, P. Edic, M. Iatrou, S. McOlash, P. Sainath, C. Shaughnessy, B. Tower, et al., Catsim: a new computer assisted tomography simulation environment, In Medical Imaging 2007: Physics of Medical Imaging, volume 6510, page 65102G. International Society for Optics and Photonics, 2007.

[14]

S. OsherZ. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690. doi: 10.1137/16M1058686.

[15]

S. OsherM. BurgerD. GoldfarbJ. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Modeling & Simulation, 4 (2005), 460-489. doi: 10.1137/040605412.

[16]

G. Peyré, Manifold models for signals and images, Computer Vision and Image Understanding, 113 (2009), 249-260.

[17]

Y. QuanH. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame construction and image recovery, Journal of Scientific Computing, 63 (2015), 307-329. doi: 10.1007/s10915-014-9893-2.

[18]

L. RitschlF. BergnerC. Fleischmann and M. Kachelrieß, Improved total variation-based ct image reconstruction applied to clinical data, Physics in Medicine & Biology, 56 (2011), 1545-1561. doi: 10.1088/0031-9155/56/6/003.

[19]

E. Y. Sidky, Y. Duchin, X. Pan and C. Ullberg, A constrained, total-variation minimization algorithm for low-intensity x-ray ct, Medical Physics, 38 (2011), S117–S125. doi: 10.1118/1.3560887.

[20]

J. Tang, B. E. Nett and G.-H. Chen, Performance comparison between total variation (tv)-based compressed sensing and statistical iterative reconstruction algorithms, Physics in Medicine & Biology, 54 (2009), 5781–5804. doi: 10.1088/0031-9155/54/19/008.

[21]

Q. XuH. YuX. MouL. ZhangJ. Hsieh and G. Wang, Low-dose x-ray ct reconstruction via dictionary learning, IEEE Transactions on Medical Imaging, 31 (2012), 1682-1697.

[22]

X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal total variation, Inverse problems and Imaging, 4 (2010), 191-210. doi: 10.3934/ipi.2010.4.191.

show all references

References:
[1]

T. BroxO. Kleinschmidt and D. Cremers, Efficient nonlocal means for denoising of textural patterns, IEEE Transactions on Image Processing, 17 (2008), 1083-1092. doi: 10.1109/TIP.2008.924281.

[2]

A. Buades, B. Coll and J.-M. Morel, A non-local algorithm for image denoising, In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 60–65. IEEE, 2005.

[3]

E. J. CandèsJ. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509. doi: 10.1109/TIT.2005.862083.

[4]

E. J. CandesJ. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 59 (2006), 1207-1223. doi: 10.1002/cpa.20124.

[5]

G.-H. ChenJ. Tang and S. Leng, Prior image constrained compressed sensing (piccs): a method to accurately reconstruct dynamic ct images from highly undersampled projection data sets, Medical Physics, 35 (2008), 660-663. doi: 10.1118/1.2836423.

[6]

I. A. Elbakri and J. A. Fessler, Statistical image reconstruction for polyenergetic x-ray computed tomography, IEEE Transactions on Medical Imaging, 21 (2002), 89-99. doi: 10.1109/42.993128.

[7]

H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy ct based on a prior rank, intensity and sparsity model (prism), Inverse Problems, 27 (2011), 115012, 22pp. doi: 10.1088/0266-5611/27/11/115012.

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7 (2008), 1005-1028. doi: 10.1137/070698592.

[9]

S. Ha and K. Mueller, Low dose ct image restoration using a database of image patches, Physics in Medicine & Biology, 60 (2015), 869-882. doi: 10.1088/0031-9155/60/2/869.

[10]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE press New York, 1988.

[11]

Z. LiZ. Shi and J. Sun, Point integral method for solving poisson-type equations on manifolds from point clouds with convergence guarantees, Communications in Computational Physics, 22 (2017), 228-258. doi: 10.4208/cicp.111015.250716a.

[12]

B. De ManJ. NuytsP. DupontG. Marchal and P. Suetens, An iterative maximum-likelihood polychromatic algorithm for ct, IEEE Transactions on Medical Imaging, 20 (2001), 999-1008.

[13]

B. De Man, S. Basu, N. Chandra, B. Dunham, P. Edic, M. Iatrou, S. McOlash, P. Sainath, C. Shaughnessy, B. Tower, et al., Catsim: a new computer assisted tomography simulation environment, In Medical Imaging 2007: Physics of Medical Imaging, volume 6510, page 65102G. International Society for Optics and Photonics, 2007.

[14]

S. OsherZ. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690. doi: 10.1137/16M1058686.

[15]

S. OsherM. BurgerD. GoldfarbJ. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Modeling & Simulation, 4 (2005), 460-489. doi: 10.1137/040605412.

[16]

G. Peyré, Manifold models for signals and images, Computer Vision and Image Understanding, 113 (2009), 249-260.

[17]

Y. QuanH. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame construction and image recovery, Journal of Scientific Computing, 63 (2015), 307-329. doi: 10.1007/s10915-014-9893-2.

[18]

L. RitschlF. BergnerC. Fleischmann and M. Kachelrieß, Improved total variation-based ct image reconstruction applied to clinical data, Physics in Medicine & Biology, 56 (2011), 1545-1561. doi: 10.1088/0031-9155/56/6/003.

[19]

E. Y. Sidky, Y. Duchin, X. Pan and C. Ullberg, A constrained, total-variation minimization algorithm for low-intensity x-ray ct, Medical Physics, 38 (2011), S117–S125. doi: 10.1118/1.3560887.

[20]

J. Tang, B. E. Nett and G.-H. Chen, Performance comparison between total variation (tv)-based compressed sensing and statistical iterative reconstruction algorithms, Physics in Medicine & Biology, 54 (2009), 5781–5804. doi: 10.1088/0031-9155/54/19/008.

[21]

Q. XuH. YuX. MouL. ZhangJ. Hsieh and G. Wang, Low-dose x-ray ct reconstruction via dictionary learning, IEEE Transactions on Medical Imaging, 31 (2012), 1682-1697.

[22]

X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal total variation, Inverse problems and Imaging, 4 (2010), 191-210. doi: 10.3934/ipi.2010.4.191.

Figure 1.  The patch manifold of a CT image (left) and the corresponding dimension function of the patch manifold with patch size $ 16\times 16 $ (right)
Figure 2.  Comparison of image reconstruction. (a) Ground truth CT images, (b) the reconstructed image using the LDMM-based method, and (c) the reconstructed image using SART with TV
Figure 3.  Profiles of reconstructed image. (a) The profiles along the vertical midlines in the phantom and image reconstructed by LDMM-based reconstruction method, (b) the profiles along the horizontal midlines in the phantom and image reconstructed by LDMM-based reconstruction method. (c) The profiles along the vertical midlines in the phantom and image reconstructed by SART+TV reconstruction method, and (d) the profiles along the horizontal vertical midlines in the phantom and image reconstructed by SART+TV reconstruction method
Figure 4.  The sinogram simulated from CatSim
Figure 6.  The sinogram measured from a clinical x-ray CT scanner
Figure 5.  Comparison of CT reconstruction. (a) Ground truth CT images, (b) the reconstructed image using the LDMM-based image reconstruction method, and (c) the reconstructed image using SART with TV
Figure 7.  Comparison of CT image reconstructions from clinical CT raw data. (a) The reconstructed image using the LDMM-based method, (b) the reconstructed image using SART with TV, and (c) the reconstructed image using FPB
[1]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[2]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[3]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[4]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[5]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[6]

Li Shen, Eric Todd Quinto, Shiqiang Wang, Ming Jiang. Simultaneous reconstruction and segmentation with the Mumford-Shah functional for electron tomography. Inverse Problems & Imaging, 2018, 12 (6) : 1343-1364. doi: 10.3934/ipi.2018056

[7]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

[8]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems & Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[9]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[10]

Daniil Kazantsev, William M. Thompson, William R. B. Lionheart, Geert Van Eyndhoven, Anders P. Kaestner, Katherine J. Dobson, Philip J. Withers, Peter D. Lee. 4D-CT reconstruction with unified spatial-temporal patch-based regularization. Inverse Problems & Imaging, 2015, 9 (2) : 447-467. doi: 10.3934/ipi.2015.9.447

[11]

Chengxiang Wang, Li Zeng. Error bounds and stability in the $l_{0}$ regularized for CT reconstruction from small projections. Inverse Problems & Imaging, 2016, 10 (3) : 829-853. doi: 10.3934/ipi.2016023

[12]

Ming Yan, Alex A. T. Bui, Jason Cong, Luminita A. Vese. General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Problems & Imaging, 2013, 7 (3) : 1007-1029. doi: 10.3934/ipi.2013.7.1007

[13]

Larisa Beilina, Michel Cristofol, Kati Niinimäki. Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Problems & Imaging, 2015, 9 (1) : 1-25. doi: 10.3934/ipi.2015.9.1

[14]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems & Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[15]

Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems & Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030

[16]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[17]

Konstantinos Papafitsoros, Kristian Bredies. A study of the one dimensional total generalised variation regularisation problem. Inverse Problems & Imaging, 2015, 9 (2) : 511-550. doi: 10.3934/ipi.2015.9.511

[18]

Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems & Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455

[19]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[20]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

2017 Impact Factor: 1.465

Article outline

Figures and Tables

[Back to Top]